
An Overview of the Leon Verification System

Verification by Translation to Recursive Functions

Régis Blanc Etienne Kneuss
Viktor Kuncak Philippe Suter

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
firstname.lastname@epfl.ch

ABSTRACT
We present the Leon verification system for a subset of the
Scala programming language. Along with several functional
features of Scala, Leon supports imperative constructs such
as mutations and loops, using a translation into recursive
functional form. Both properties and programs in Leon are
expressed in terms of user-defined functions. We discuss
several techniques that led to an efficient semi-decision pro-
cedure for first-order constraints with recursive functions,
which is the core solving engine of Leon. We describe a
generational unrolling strategy for recursive templates that
yields smaller satisfiable formulas and ensures completeness
for counterexamples. We illustrate the current capabilities
of Leon on a set of examples, such as data structure imple-
mentations; we show that Leon successfully finds bugs or
proves completeness of pattern matching as well as validity
of function postconditions.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meaning of Programs]: Spec-
ifying and Verifying and Reasoning about Programs

General Terms
Algorithms, Verification

Keywords
Verification, Satisfiability

1. INTRODUCTION
Scala supports the development of reliable software in a

number of ways: concise and readable code, an advanced
type system, and testing frameworks such as Scalacheck.
This paper adds a new dimension to this reliability toolkit:
an automated program verifier for a Scala subset. Our
verifier, named Leon, leverages existing run-time checking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Scala ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2064-1 ...$15.00.

constructs for Scala, the require and ensuring clauses [31],
allowing them to be proved statically, for all executions.
The specification constructs use executable Scala expres-
sions, possibly containing function calls. Developers there-
fore need not learn a new specification language, but simply
obtain additional leverage from executable assertions, and
additional motivation to write them. Thanks to Leon, as-
sertions can be statically checked, providing full coverage
over all executions.

Leon thus brings strong guarantees of static types to the
expressive power of tests and run-time checks. Having the
same specification and implementation language takes ad-
vantage of the clear semantics of the underlying language
and unifies two related concepts. For the programmer with-
out strong background in formal logic, being able to relate to
familiar language constructs is very encouraging. Although
not universally used, such approaches have been adopted in
the past, most notably in the ACL2 system and its prede-
cessors [21], which have been used to verify an impressive
set of real-world systems [20].

At the core of Leon is a verifier for a purely functional
subset of Scala. The verifier makes use of contracts when
they are available, but does not require fully inductive in-
variants and can be used even with few or no annotations.
Like bounded model checking algorithms, the algorithms in-
side Leon are guaranteed to find an error if it exists, even
if the program has no auxiliary annotations other than the
top level function contract. We have found this aspect of
Leon to be immensely useful in practice for debugging both
specifications and the code. In addition to the ability to find
all errors, the algorithms inside Leon also terminate for cor-
rect programs when they belong to well-specified fragments
of decidable theories with recursive functions [35, 36].

The completeness makes Leon suitable for extended type
checking. It can, for example, perform semantic exhaustive-
ness checks for pattern matching constructs with arbitrary
guards and predictably verify invariants on algebraic data
types. Another notable feature is that Leon is guaranteed to
accept a correct program in such fragments, will not accept
an incorrect program, and is guaranteed to find a counterex-
ample if the program is not correct. A combination of these
features is something that neither typical type systems nor
verification techniques achieve; this has been traditionally
reserved for model checking algorithms on finite-state pro-
grams. The techniques in Leon now bring these benefits to
functional programs that manipulate unbounded data types.

Leon can thus be simultaneously viewed as a theorem
prover and as a program verifier. It tightly integrates with

the Z3 theorem prover [10], mapping functional Scala data
types directly to mathematical data types of Z3. This direct
mapping means that we can use higher-level reasoning than
employed in many imperative program verifiers that must
deal with pointers and complex library implementations. As
a prover, Leon extends the theory of Z3 with recursive func-
tions. To handle such functions Leon uses an algorithm for
iterative unfolding with under- and over-approximation of
recursive calls. The implementation contains optimizations
that leverage incremental reasoning in Z3 to make the en-
tire process efficient. Leon thus benefits from the ideas of
symbolic execution. Yet, unlike KLEE-like systems, Leon
has no limitation on the number of memory cells in the ini-
tial state, and does not explicitly enumerate program paths.
Completeness for counterexamples is possible in Leon due to
the executable nature of its language. We use executability
in Leon not only to provide guarantees on the algorithm, but
also to improve the performance of the solver: in a number
of scenarios we can replace constraint solving in the SMT
solver with direct execution of the original program. For
that purpose, we have built a simple and fast bytecode com-
piler inside Leon.

Although the core language of Leon engine is a set of
pure recursive functions, Leon also supports several exten-
sions to accept more general forms of programs as input.
In particular, it supports nested function definitions, muta-
ble local variables, local mutable arrays, and while loops.
Such fragment is related to those used in modeling lan-
guages such as VDM [19, 18], and abstract state machines
[9]. Leon translates such extended constructs into flat func-
tional code, while preserving input-output behavior. In con-
trast to many verification-condition generation approaches
that target SMT provers, Leon’s semantic translation does
not require invariants, it preserves validity, and also pre-
serves counterexamples. We expect to continue following
such methodology in the future, as we add more constructs
into the subset that Leon supports. Note that a basic sup-
port for higher-order functions was available in a past ver-
sion of Leon [23]; it is currently disabled, but a new version
is under development.

We show the usefulness of Leon on a number of examples
that include not only lightweight checking but also more
complex examples of full-functional verification. Such tasks
are usually associated with less predictable and less auto-
mated methods, such as proof assistants. We have found
Leon to be extremely productive for development of such
programs and specifications. Although Leon does ultimately
face limitations for tasks that require creative uses of induc-
tion and lemmas, we have found it to go a long way in de-
bugging the specification for valid code. To further improve
usefulness of Leon, we have built a web-based interface, run-
ning at:

http://lara.epfl.ch/leon/

The web interface supports continuous compilation and
verification of programs as well as sharing verified programs
through stable links. Leon also supports automated and in-
teractive program synthesis [22]. This functionality heavily
relies on verification, but is beyond the scope of the present
paper.

In its current state, we believe Leon to be very useful for
modeling and verification tasks. We have used it to ver-
ify and find errors in a number of complex functional data
structures and algorithms, some of which we illustrate in this

def insert(e: Int, l: List): List = {
require(isSorted(l))
l match {
case Nil ⇒ Cons(e,Nil)
case Cons(x,xs) if x ≤ e ⇒ Cons(x,insert(e, xs))
case ⇒ Cons(e, l)
}
} ensuring(res ⇒ contents(res) == contents(l) ++ Set(e)

&& isSorted(res) && size(res) == size(l)+1)

def sort(l: List): List = (l match {
case Nil ⇒ Nil
case Cons(x,xs) ⇒ insert(x, sort(xs))
})ensuring(res ⇒ contents(res) == contents(l)

&& isSorted(res) && size(res) == size(l))

def contents(l: List): Set[Int] = l match {
case Nil ⇒ Set.empty[Int]
case Cons(x,xs) ⇒ contents(xs) ++ Set(x)
}

def size(l : List) : Int = l match {
case Nil() ⇒ 0
case Cons(, xs) ⇒ 1 + size(xs)

} ensuring(≥ 0)

def isSorted(l: List): Boolean = l match {
case Nil() ⇒ true
case Cons(x, Nil()) ⇒ true
case Cons(x, Cons(y, ys)) ⇒ x ≤ y && isSorted(Cons(y, ys))

}

Figure 1: Insertion sort.

paper. The design of Leon purposely avoids heavy annota-
tions. Leon is therefore as much a verification project as it
is a language design and implementation project: it aims to
keep the verification tractable while gradually increasing the
complexity of programs and problems that it can handle.

In the Spring 2013 semester we have used Leon in a mas-
ter’s course on Synthesis, Analysis, and Verification. The
web framework allowed us to use zero-setup to get students
to start verifying examples. During the course we have for-
mulated further assignments and individual projects for stu-
dents to add functionality to the verifier. We also recently
made public the source code repository for Leon and look
forward to community contributions and experiments.1

2. EXAMPLES
We introduce the flavor of verification and error finding

in Leon through sorting and data structure examples. We
focus on describing three data structures; Section 7 presents
our results on a larger selection. The online interface at
http://lara.epfl.ch/leon/ provides the chance to test the
system and its responsiveness.

2.1 Insertion Sort
Figure 1 shows insertion sort implemented in the subset

of the language that Leon supports. List is defined as a
recursive algebraic data type storing list of integers. Due to
the nature of our examples, we rely extensively on pattern
matching on algebraic data types with optional guards. Un-
like the reference Scala compiler, Leon is also able to verify

1https://github.com/epfl-lara/leon

def add(x: Int, t: Tree): Tree = {
require(redNodesHaveBlackChildren(t) && blackBalanced(t))

def ins(x: Int, t: Tree): Tree = {
require(redNodesHaveBlackChildren(t) && blackBalanced(t))
t match {
case Empty ⇒ Node(Red,Empty,x,Empty)
case Node(c,a,y,b) ⇒
if (x < y) balance(c, ins(x, a), y, b)
else if (x == y) Node(c,a,y,b)
else balance(c,a,y,ins(x, b))

}}ensuring (res ⇒
content(res) == content(t) ++ Set(x) &&
size(t) ≤ size(res) && size(res) ≤ size(t) + 1 &&
redDescHaveBlackChildren(res) && blackBalanced(res))

def makeBlack(n: Tree): Tree = {
require(redDescHaveBlackChildren(n) && blackBalanced(n))
n match {
case Node(Red,l,v,r) ⇒ Node(Black,l,v,r)
case ⇒ n

}}ensuring(res ⇒
redNodesHaveBlackChildren(res) && blackBalanced(res))

// body of add:
makeBlack(ins(x, t))
}ensuring (res ⇒ content(res) == content(t) ++ Set(x) &&

redNodesHaveBlackChildren(res) && blackBalanced(res))

Figure 2: Adding an element into a red-black tree.

def balance(c: Color, a: Tree, x: Int, b: Tree): Tree = {
Node(c,a,x,b) match {
case Node(Black,Node(Red,Node(Red,a,xV,b),yV,c),zV,d) ⇒
Node(Red,Node(Black,a,xV,b),yV,Node(Black,c,zV,d))

case Node(Black,Node(Red,a,xV,Node(Red,b,yV,c)),zV,d) ⇒
Node(Red,Node(Black,a,xV,b),yV,Node(Black,c,zV,d))

case Node(Black,a,xV,Node(Red,Node(Red,b,yV,c),zV,d)) ⇒
Node(Red,Node(Black,a,xV,b),yV,Node(Black,c,zV,d))

case Node(Black,a,xV,Node(Red,b,yV,Node(Red,c,zV,d))) ⇒
Node(Red,Node(Black,a,xV,b),yV,Node(Black,c,zV,d))

case Node(c,a,xV,b) ⇒ Node(c,a,xV,b)
}} ensuring (res ⇒ content(res) == content(Node(c,a,x,b)))

Figure 3: Balancing a red-black tree.

the completeness of the match construct in the presence of
arbitrary guards.

The example illustrates the syntax for preconditions (require)
and postconditions (ensuring). When compiled with scalac

these constructs are interpreted as dynamic contracts that
throw corresponding exceptions, whereas Leon tries to prove
statically that their conditions hold. The contents and
isSorted functions are user defined functions defined also
recursively for the purpose of expressing specifications. Leon
supports sets, which is useful for writing abstractions of con-
tainer structures.

We have also verified or found errors in more complex
algorithms, such as merge sort and a mutable array-based
implementation of a quick sort.

2.2 Red-Black Trees
Leon is also able to handle complex data structures. Fig-

ure 2 shows the insertion of an element into a red-black tree,
establishing that the algebraic data type of trees satisfies a
number of complex invariants [32]. Leon proves, in partic-
ular, that the insertion maintains the coloring and height
invariant of red-black trees, and that it correctly updates

def maxSum(a: Array[Int]): (Int, Int) = {
require(a.length > 0)
var sum = 0
var max = 0
var i = 0
(while(i < a.length) {
if(max < a(i))
max = a(i)

sum = sum + a(i)
i = i + 1
}) invariant (sum ≤ i ∗ max && 0 ≤ i && i ≤ a.length)
(sum, max)
} ensuring(res ⇒ res. 1 ≤ a.length ∗ res. 2)

Figure 4: Sum and max of an array.

the set of elements after the operation. These invariants
are expressed using recursive functions that take an alge-
braic data type value and return a boolean value indicating
whether the property holds. This example also introduces an
additional feature of Leon which is the possibility to define
local functions. Local functions help build a clean interface
to a function by keeping local operations hidden. Figure 3
shows a balancing operation of a red-black tree. A functional
description of this operation is very compact and also very
easy for Leon to handle: the correct version in the figure
verifies instantly, whereas a bug that breaks its correctness
is instantly identified with a counterexample. Note that, al-
though the function is non-recursive, its specification uses a
recursive function content.

2.3 Sum and Max
To illustrate imperative constructs in Leon, Figure 4 shows

a program that computes the sum and the maximum of the
elements in a given array. This program was part of the
VSTTE 2010 verification competition. Note that the exam-
ple uses arrays, loops, and mutable local variables. Leon
proves its correctness instantly by first translating the while
loop into a nested tail-recursive pure function, hoisting the
generated nested function outside, and verifying the result-
ing functional program.

3. LEON LANGUAGE
We now describe the Leon input language, a subset of the

Scala programming language. This subset is composed of
two parts: a purely functional part referred to as PureScala
and a selected set of extensions. The formal grammar of this
subset can be found in Figure 5. It covers most first-order
features of Scala, including case classes and pattern match-
ing. It also supports special data types such as sets, maps,
and arrays. However, only a selected number of methods
are supported for these types.

This subset is expressive enough to concisely define cus-
tom data-structures and their corresponding operations. The
specifications for these operations can be provided through
require and ensuring constructs. Contracts are also written in
this subset and can leverage the same expressiveness. Pro-
grams and contracts are thus defined using the same exe-
cutable language.

While having a predominant functional flavor, Scala also
supports imperative constructs such as mutable fields and
variables. It is however common to see mutation being lim-
ited to the scope of a function, keeping the overall function

Purely functional subset (PureScala):

program ::= object id { definition∗ }
definition ::= abstract class id

| case class id (decls) extends id

| fundef
fundef ::= def id (decls) : type = {

〈 require(expr) 〉?
expr

} 〈 ensuring (id ⇒ expr) 〉?
decls ::= ε | id: type 〈 , id: type 〉∗

expr ::= 0 | 1 | ... | true | false | id
| if (expr) expr else expr

| val id = expr; expr

| (〈 expr 〈 , expr 〉∗ 〉?)

| id (〈 expr 〈 , expr 〉∗ 〉?)

| expr match { 〈 case pattern ⇒ expr 〉∗ }
| expr . id

| expr . id (〈 expr 〈 , expr 〉∗ 〉?)

pattern ::= binder | binder : type

| binder @ id(〈 pattern 〈 , pattern 〉∗ 〉?)

| binder @ (pattern 〈 , pattern 〉∗)

| id(〈 pattern 〈 , pattern 〉∗ 〉?)

| (pattern 〈 , pattern 〉∗)

binder ::= id |
id ::= IDENT

type ::= id | Int | Boolean | Set[type]

| Map[type, type] | Array[type]

Imperative constructs and nested functions:

expr ::= while (expr) expr 〈 invariant (expr) 〉?
| if (expr) expr

| var id = expr

| id = expr

| id (expr) = expr

| fundef
| { expr 〈 ; expr 〉∗ }
| ()

type ::= Unit

Figure 5: Abstract syntax of the Leon input lan-
guage.

free from observable side-effects. Indeed, it is often easier to
write algorithms with local mutation and loops rather than
using their equivalent purely functional forms. For this rea-
son, we extended PureScala with a set of imperative con-
structs, notably permitting local mutations and while loops.
Section 5 describes how Leon handles these extensions.

φ1

φ1 ∧ b1

φ2

φ2 ∧ b2

φ3

φ3 ∧ b3

. . .

Unsat? Unsat? Unsat?Sat? Sat? Sat?

Figure 6: A sequence of successive over- and under-
approximations.

4. CORE ALGORITHM
In this section, we give an overview of an algorithm to

solve constraints over PureScala expressions. (For the the-
oretical foundations and the first experiments on functional
programs, please see [34, 36].)

This procedure is the core of Leon’s symbolic reasoning
capabilities: more expressive constructs are reduced to this
subset (see Section 5).

The idea of the algorithm is to determine the truth value
of a PureScala boolean expression (formula) through a suc-
cession of under- and over-approximations. PureScala is a
Turing-complete language, so we cannot expect this to al-
ways succeed. Our algorithm, however, has the desirable
theoretical property that it always finds counterexamples to
invalid formulas. It is thus a semi-decision procedure for
PureScala formulas.

All the data types of PureScala programs are readily sup-
ported by state-of-the-art SMT solvers, which can efficiently
decide formulas over combinations of theories such as boolean
algebra, integer arithmetic, term algebras (ADTs), sets or
maps [10, 6, 12]. The remaining challenge is in handling
user-defined recursive functions. SMT solvers typically sup-
port uninterpreted function symbols, and we leverage those
in our procedure. Uninterpreted function symbols are a use-
ful over-approximation of interpreted function symbols; be-
cause the SMT solver is allowed to assume any model for
an uninterpreted function, when it reports that a constraint
is unsatisfiable it implies that, in particular, there is also
no solution when the correct interpretation is assumed. On
the other hand, when the SMT solver produces a model for
a constraint assuming uninterpreted functions, we cannot
reliably conclude that a model exists for the correct inter-
pretation. The challenge that Leon’s algorithm essentially
addresses is to find reliable models in this latter case.

To be able to perform both over-approximation and under-
approximation, we transform functional programs into log-
ical formulas that represent partial deterministic paths in
the program. For each function in a Leon program, we gen-
erate an equivalent representation as a set of clauses. For
instance, for the function

def size(lst : List) : Int = lst match {
case Nil ⇒ 0
case Cons(, xs) ⇒ 1 + size(xs)
}

we produce the clauses:

(size(lst) = e1) ∧ (b1 ⇐⇒ lst = Nil)

∧ (b1 =⇒ e1 = 0) ∧ (¬b1 =⇒ e1 = size(lst.tail))
(1)

Intuitively, these clauses represent the relation between the
input variable lst and the result. The important difference

between the two representation is the introduction of vari-
ables that represent the status of branches in the code (in
this example, the variable b1). Explicitly naming branch
variables allows us to control the parts of function defini-
tions that the SMT solver can explore.

As an example, consider a constraint φ ≡ size(lst) = 1.
We can create a formula equisatisfiable —assuming the cor-
rect interpretation of size— with φ by conjoining it with the
clauses (1). We call this new formula φ1. Now, assuming
an uninterpreted function symbol for size, if φ1 is unsatisfi-
able, then so is φ for any interpretation of size. If however
φ1 is satisfiable, it may be because the uninterpreted term
size(lst.tail) was assigned an impossible value.2 We control
for this by checking the satisfiability of φ1 ∧ b1. This addi-
tional boolean literal forces the solver to ignore the branch
containing the uninterpreted term. If this new formula is
satisfiable, then so is φ1 and we are done. If it is not, it may
be because of the restricted branch. In this case, we intro-
duce the definition of size(lst.tail) by instantiating the clauses
(1) one more time, properly substituting lst.tail for lst, and
using fresh variables for b1 and e1.

We can repeat these steps, thus producing a sequence of
alternating approximations. This process is depicted in Fig-
ure 6. An important property is that, while it may not nec-
essarily derive all proofs of unsatisfiability, this technique
will always find counterexamples when they exist. Intu-
itively, this happens because a counterexample corresponds
to an execution of the property resulting in false, and our
technique enumerates all possible executions in increasing
lengths.

Because PureScala is Turing-complete, we cannot expect
the procedure to always terminate when a constraint is un-
satisfiable. The approach typically adopted in Leon for such
cases is to impose a timeout. For an important class of
recursive functions, though, the approach outlined in this
section acts as a decision procedure, and terminates in all
cases [35, 36, 33]. The functions contents, size, or isSorted

shown in Figure 1, for instance, fall into this class.

5. HANDLING IMPERATIVE PROGRAMS
BY TRANSLATION

We now present the transformations we apply to reduce
the general input language of Leon to its functional core,
PureScala. We present a recursive procedure to map imper-
ative statements to a series of definitions (val and def) that
form a new scope introducing fresh names for the program
variables, and keeping a mapping from program variables
to their current name inside the scope. The procedure is in-
spired by the generation of verification conditions for imper-
ative programs [11, 15, 28]. Some of the approaches suffer
from an exponential size of the verification condition as a
function of the size of the program fragment. Our transfor-
mation to functional programs, followed by a later genera-
tion of verification conditions avoids the exponential growth
similarly to the work of Flanagan et al. [13]. Whereas we we
use a more direct model, without weakest preconditions, the
net result is again that the exponential growth of program
paths is pushed to the underlying SMT solver, as opposed
to being explored eagerly.

2Note that there is a chance that the model is in fact valid.
In Leon we check this by running an evaluator, and return
the result if confirmed.

We can represent any imperative program fragment as a
series of definitions followed by a group of parallel assign-
ments. These assignments rename the program variables to
their new names, that is, the right hand side will be the new
identifiers of the program variable (that have been intro-
duced by the definitions) and the left hand side will be the
program variables themselves. Those parallel assignments
are an explicit representation of the mapping from program
variables to their fresh names. As an example, consider the
following imperative program:

x = 2
y = 3
x = y + 1

It can be equivalently written as follows:

val x1 = 2
val y1 = 3
val x2 = y1 + 1
x = x2
y = y1

This is the intuition behind this mapping from program
variables to their fresh identifiers representation. The advan-
tage is that we can build a recursive procedure and easily
combine the results when we have sequences of statements.

5.1 Example
The following program computes the floor of the square

root of an integer n:

def sqrt(n : Int) : Int = {
var toSub = 1
var left = n
while(left ≥ 0) {
if(toSub % 2 == 1)
left -= toSub

toSub += 1
}
(toSub / 2) − 1
}

Our transformation starts from the innermost elements;
in particular, it transforms the conditional expression into
the following:

val left2 = if(toSub % 2 == 1) {
val left1 = left − toSub
left1
} else {
left
}
left = left2

Then it combines this expression with the rest of the body
of the loop, yielding:

val left2 =
if(toSub % 2 == 1) {
val left1 = left − toSub
left1
} else {
left
}

val toSub1 = tuSub + 1
left = left2
toSub = toSub1

The final assignments can be seen as a mapping from pro-
gram identifiers to fresh identifiers. The while loop is then
translated to a recursive function using a similar technique:

def rec(left3: Int, toSub2: Int) = if(left3 ≥ 0) {
val left2 =
if(toSub3 % 2 == 1) {
val left1 = left3 − toSub2
left1
} else {
left3
}

val toSub1 = tuSub2 + 1
rec(left2, toSub1)
} else {
(left3, toSub2)
}
val (left4, toSub3) = rec(left, toSub)
left = left4
toSub = toSub3

In this transformation, we made use of the mapping infor-
mation in the body for the recursive call. A loop invariant
is translated into a pre and post-condition of the recursive
function. We also substituted left and toSub in the body
of the recursive function. In the final step, we combine all
top level statements and substitute the new variables in the
returned expression:

def sqrt(n : Int) : Int = {
val toSub4 = 1
val left5 = n
def rec(left3: Int, toSub2: Int) = if(left3 ≥ 0) {
val left2 =
if(toSub3 % 2 == 1) {
val left1 = left3 − toSub2
left1
} else {
left3
}

val toSub1 = tuSub2 + 1
rec(left2, toSub1)
} else {
(left3, toSub2)
}
val (left4, toSub3) = rec(left5, toSub4)
(toSub3 / 2) − 1
}

5.2 Transformation Rules
Figure 7 shows the formal rules to rewrite imperative code

into equivalent functional code. The rules define a function
e ; 〈T | σ〉, which constructs from an expression e a term
constructor T and a variable substitution function σ.

We give the main rules for each fundamental transforma-
tion. This is a mathematical formalization of the intuition of
the previous section, we defined a scope of definitions as well
as maintained a mapping from program variables to fresh
names. Note that, each time we introduce subscripted ver-
sions of variables, we are assuming they adopt fresh names.

We write term constructors as terms with exactly one in-
stance of a special value 2 (a “hole”). If e is an expression
and T a term constructor, we write T [e] the expression ob-
tained by applying the constructor T to e (“plugging the
hole”). We also use this notation to apply a term construc-
tor to another constructor, in which case the result is a new
term constructor. Similarly, we apply variables substitutions
to variables, variable tuples, expressions and term construc-
tors alike, producing as an output the kind passed as input.

As an illustration, if T ≡ 2+ y, e ≡ x + 1, and σ ≡ {x 7→

z}, then we have for instance:

T [e] ≡ x + 1 + y T [T] ≡ 2+y + y

σ(e) ≡ z + 1 σ(T) ≡ 2+y

We denote the point-wise update of a substitution function
by σ2||σ1. This should be interpreted as “σ2 or else σ1”.
That is, in case the same variable is mapped by both σ1 and
σ2, the mapping in σ2 overrides the one in σ.

For ease of presentation, we assume that blocks of state-
ments are terminated with a pure expression r from the core
language, which corresponds to the value computed in the
block. So, given the initial body of the block b and the
following derivation:

b ; 〈s | σ〉

we can define the function expression equivalent to b; r by:

T [σ(r)]

This simplification allows us to ignore the fact that each of
those expressions with side effect actually returns a value,
and could be the last one of a function. This is particularly
true for the if expression which can return an expression
additionally to its effects. The rules can be generalized to
handle such situation by using a fourth element in the re-
lation denoting the actual returned value if the expression
was returned from a function or assigned to some variable.
Leon implements this, more general, behaviour, which we
simplified for presentation purposes.

Another presentation simplification is that expressions such
as right hand sides of assignments and test conditions are
pure expressions that do not need to be transformed. How-
ever, it is also possible to generalize the rules to handle such
expressions when they are not pure, but omit this discussion.
Again, in our implementation we support this more general
transformation. Note also that pattern matching is sim-
ply a generalized conditional expression in Leon; we do not
present the rule here but Leon implements complete trans-
lation rules for pattern matching. We assume that if(c) t is
rewritten to if(c) t else () with () corresponding to the Unit

literal.

5.3 Function Hoisting
Nested functions can read immutable variables from the

enclosing scope, for example the formal parameters or a let-
binding from an outer function. Note that the previously de-
scribed transformation rules have already run at this point,
so the program, in particular nested functions, are free of
side-effects.

The function hosting phase starts by propagating the pre-
condition of the enclosing function to the nested function.
We also track path conditions until the definition. This outer
precondition is indeed guaranteed to hold within the nested
function. We then close nested functions, which consists
in augmenting the signature of functions with all variables
read from the enclosing scope. Function invocations are also
updated accordingly to include these additional arguments.
As a result, nested functions become self-contained and can
be hoisted to the top level.

This transformation causes nested functions to be treated
modularly, similarly to functions that were not nested orig-
inally. It thus prevents Leon from exploiting the fact that
these functions could only be called from a finite number

x = e ; 〈val x1 = e; 2 | {x 7→ x1}〉 var x = e ; 〈val x1 = e; 2 | {x 7→ x1}〉
e1 ; 〈T1 | σ1〉 e2 ; 〈T2 | σ2〉

e1; e2 ; 〈T1[σ1(T2)] | σ2||σ1〉

t ; 〈T1 | σ1〉 e ; 〈T2 | σ2〉 dom(σ2||σ1) = x

if(c) t else e ; 〈val x1 = if(c) T1[σ1(x)] else T2[σ2(x)]; 2 | {x 7→ x1}〉 () ; 〈2 | ∅〉

e ; 〈T1 | σ1〉 σ1 = {x 7→ x1} σ2 = {x 7→ x2} T2 = σ2(T1)

while(c) e ; 〈def loop(x2) = { if(σ2(c)) T2[loop(x1)] else x2}; val x3 = loop(x); 2 | {x 7→ x3}〉

Figure 7: Transformation rules to rewrite imperative constructs into functional ones.

of program points. That said, nested functions inherit the
preconditions of the enclosing functions; those can be ap-
plied the nested function in essentially same form, because
function arguments are immutable. The following example
illustrates this particular trade-off between modularity and
precision that arises with local functions.

def f(x: Int) = {
require(x > 0)
def g(y: Int) = {
y ∗ 2
} ensuring(> y)
g(x) }

After hoisting, we obtain the following functions.

def g(y: Int, x: Int) = {
require(x > 0)
y ∗ 2
} ensuring(> y)

def f(x: Int) = {
require(x > 0)
g(x, x)
}

Even though g is originally only called with positive val-
ues, this fact is not propagated to the new precondition.
Leon thus reports a spurious counterexample in the form of
y = −1.

5.4 Arrays
We support immutable arrays in the core solver by map-

ping them to the theory of maps over the domain of integers.
In order to support the .size operation, arrays are encoded as
a pair of an integer, for the length, and of a map represent-
ing the contents of the array. This is necessary since maps
have an implicit domain that spans the set of all integers.
Maintaining this symbolic information for the size lets us
generate verification conditions for accesses, thus allowing
us to prove that array accesses are safe.

Mutable arrays are supported through another transfor-
mation phase. We rewrite (imperative) array updates as
assignments and functional updates. The imperative trans-
formation phase described in the previous paragraphs then
handles those assignments as any other assignments.

6. LEON ARCHITECTURE AND FEATURES
In this section we describe the implementation of the dif-

ferent parts that make up the pipeline of Leon. The overall
architecture is displayed in Figure 8.

VC Gen Solvers Backend

Front-end
Code

Transformation
Verification

Array
Encoding

Imperative to
Functional

Function
Hoisting

Figure 8: Overall architecture of Leon.

Front end.
The front end to Leon relies on the early phases of the

official Scala compiler —up to and including refchecks. We
connected them to a custom phase that filters the Scala ab-
stract syntax trees, rejects anything not supported by Leon,
and finally produces Leon abstract syntax trees. This archi-
tecture allows us to rely entirely on the reference implemen-
tation for parsing, type inference, and type checking.

Core solver.
The core solver, described in Section 4, relies on the Z3

SMT solver [10]. Communication between Leon and Z3 is
done through the ScalaZ3 native interface [24]. As more
clauses are introduced to represent function unfoldings, new
constraints are pushed to the underlying solver. We have
found it crucial for performance to implement this loop us-
ing as low-level functions as possible; by using substitutions
over Z3 trees directly as opposed to translating back-and-
forth into Leon trees, we have lowered solving times by on
average 30% and sometimes up to 60% on comparable hard-
ware compared to the previous effort described in [36].

Code generator.
Several components in Leon need or benefit from accessing

an evaluator; a function that computes the truth value of
ground terms. In particular, the core solver uses ground
evaluation in three cases:

• Whenever a function term is ground, instead of un-
folding it using the clausal representation, we invoke
the evaluator and push a simple equality to the con-
text instead. This limits the number of boolean control
literals, and generally simplifies the context.

• Whenever an over-approximation for a constraint is es-
tablished to be satisfiable, we cannot in general trust

the result to be valid (see Section 4). In such situ-
ations, we evaluate the constraint with the obtained
model to check if, by chance, it is in fact valid.

• As an additional precaution against bugs in the solver,
we validate all models through evaluation.

To ensure fast evaluation, Leon compiles all functions us-
ing on-the-fly Java bytecode generation. Upon invocation,
the evaluator uses reflection to translate the arguments into
the Java runtime representation and to invoke the corre-
sponding method. The results are then translated back into
Leon trees.

Termination checker.
Proving that functions terminate for inputs meeting the

precondition is, in general, required for a sound analysis in
our system. While termination was previously simply as-
sumed, the latest version of Leon includes a basic termina-
tion checker, which works by identifying decreasing argu-
ments in recursive calls. Our first implementation was far
from the state of the art, but is an important step towards
a fully integrated verification system for a subset of Scala.
A more extended implementation is being developed, which
is beyond the scope of the present paper.

Web interface.
The fastest way to get started in using Leon is via its

public web interface3. It provides an editor with continu-
ous compilation similar to modern IDEs. The web server is
implemented using the Play framework4. Leon runs inside
a per-user actor on the server side, and communicates with
the client through web-sockets.

The interface also performs continuous verification: it dis-
plays an overview of the verification results and updates it
asynchronously as the program evolves. Upon modification,
the server computes a conservative subset of affected func-
tions, and re-runs verification on them. We identify four
different verification statuses: valid, invalid, timeout, and
conditionally-valid. This last status is assigned to functions
which were proved correct modularly but invoke (directly or
transitively) an invalid function. An overview of the web
interface can be seen in Figure 9.

For invalid functions, we include a counterexample in the
verification feedback. The web interface displays them for
selected functions, as shown in Figure 10.

7. EVALUATION
We used Leon to prove correctness properties about purely

functional as well as imperative data structures. Addition-
ally, we proved full functional correctness of textbook sort-
ing algorithms (insertion sort and merge sort). To give some
examples: we proved that insertion into red-black trees pre-
serves balancing, coloring properties, and implements the
proper abstract set interface.

Our results are summarized in Table 1. The benchmarks
were run on a computer equipped with two CPUs running
at 2.53GHz and 4.0 GB of RAM. We used Z3 version 4.2.
The column V/I indicates the number of valid and invalid
postconditions. The column #VCs refers to additional veri-

3http://lara.epfl.ch/leon/
4http://www.playframework.com/

Figure 10: The web-interface displays counterexam-
ples for selected functions.

Benchmark LoC V/I #VCs Time (s)
Imperative
ListOperations 146 6/1 16 0.62
AssociativeList 98 3/1 9 0.80
AmortizedQueue 128 10/1 21 2.57
SumAndMax 36 2/0 2 0.21
Arithmetic 84 4/1 8 0.58
Functional
ListOperations 107 12/0 11 0.43
AssociativeList 50 4/0 5 0.43
AmortizedQueue 114 13/0 18 1.56
SumAndMax 45 4/0 7 0.23
RedBlackTree 117 7/1 10 1.87
PropositionalLogic 81 6/1 9 0.72
SearchLinkedList 38 3/0 2 0.21
Sorting 175 13/0 17 0.48
Total 1219 87/6 135 10.71

Table 1: Summary of evaluation results.

fication conditions such as preconditions, match exhaustive-
ness and loop invariants. All benchmarks are available and
can be run from the web interface.

8. RELATED WORK
Many interactive systems that mix the concept of com-

putable functions with logic reasoning have been developed,
ACL2 [21] being one of the historical leaders. Such sys-
tems have practical applications in industrial hardware and
software verification [20]. ACL2 requires manual assistance
because it is usually required to break down a theorem into
many small lemmas that are individually proven. Other
more recent systems for functional programming include Ver-
iFun [38] and AProVE [14]. Isabelle [30] and Coq [7] are
proof assistant systems built around subsets of higher-order
logic. Although they are primarily designed around the goal
of defining and proving theorems, these languages are ex-
pressive enough to define some computable functions in a
similar way as it would be done in functional programming,
and could thus be seen as programming languages in their
own right. It is also possible to automatically generate code
for such systems.

A trait common to these systems is that the outcome is rel-
atively difficult to predict. They provide very expressive in-
put languages that make it difficult to apply general purpose
automated strategies. Many of these systems are very good

Figure 9: Overview of the web interface. The right pane displays live verification results.

at automating the proof of some valid properties, though,
mostly by a smart usage of induction, while our system is
complete for finding counterexamples. We think that our ap-
proach is more suited for practical programmers, that may
not be verification experts but that would be able to make
sense out of counterexamples.

Several tools exist for the verification of contracts [40, 39,
37] in functional languages. These in particular provide sup-
port for higher order reasoning, which Leon currently lacks.
Dafny [25]supports an imperative language as well as many
object-oriented features. It is thus able to reason about class
invariant and mutable fields, which Leon does not support so
far. Dafny translates its input program to an intermediate
language, Boogie [4], from which verifications conditions are
then generated. The generation of verification conditions is
done via the standard weakest precondition semantics [11,
29]. Our approach, on the other hand, translates the im-
perative code into functional code and does not make use of
predicate transformers. Additional features of our transla-
tion, as well as support for disciplined non-determinism are
presented in [8].

From early days, certain programming languages have
been designed with verification in mind. Such programming
languages usually have built-in features to express specifi-
cations that can be verified automatically by the compiler
itself. These languages include Spec# [5], GYPSY [2] and
Euclid [26]. Eiffel [27] popularized design by contract, where
contracts are preconditions and postconditions of functions
as language annotations. On the other hand, we have found
that Scala’s contract functions, defined in the library, work
just as well as built-in language contracts and encourage
experimenting with further specification constructs [31].

We expect that the idea of reducing programs to func-
tional constraints for analysis and verification will continue
to prove practical for more complex constructs. Such tech-
niques have been used even for translation into simpler con-

straints, including finite-state programs [3], set constraints
[1], and Horn clauses [17, 16]. Many of these constraints
can be expressed as Leon programs; we plan to explore this
connection in the future.

9. CONCLUSIONS
We presented Leon, a verification system for a subset of

Scala. Leon reasons on both functional programs and certain
imperative constructs. It translates imperative constructs
into functional code. Our verification procedure then vali-
dates the functional constraints. The verification algorithm
supports recursive programs on top of decidable theories and
is a semi-decision procedure for satisfiability; it is complete
for finding counterexamples to program correctness. Exper-
iments show that Leon is fast for practical use, providing
quick feedback whether the given programs and specifica-
tions are correct or incorrect. The completeness for coun-
terexamples and the use of the same implementation and
specification language makes Leon a practical tool that can
be used by developers without special training.

We have introduced several techniques that improved the
performance of Leon, including efficient unfolding of bodies
of recursive calls by appropriate communication with the Z3
SMT solver. The main strength of Leon among different ver-
ification tools is the ability to predictably find counterexam-
ples, as well the ability to prove correctness properties that
do not require complex inductive reasoning. We believe that
the current version of Leon, at the very least, has potential
in modeling algorithms and systems using functional Scala
as the modeling language, as well as a potential in teaching
formal methods. Thanks to the use of modular per-function
verification methods, Leon can, in principle, scale to arbi-
trarily large Scala programs written in the subset that it
supports.

10. REFERENCES
[1] A. Aiken. Introduction to set constraint-based

program analysis. Sci. Comput. Programming,
35:79–111, 1999.

[2] A. L. Ambler. GYPSY: A language for specification
and implementation of verifiable programs. In
Language Design for Reliable Software, pages 1–10,
1977.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K.
Rajamani. Automatic predicate abstraction of C
programs. 2001.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs,
and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In FMCO, pages
364–387, 2005.

[5] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,
W. Schulte, and H. Venter. Specification and
verification: the Spec# experience. Commun. ACM,
54(6):81–91, 2011.

[6] C. Barrett, C. L. Conway, M. Deters, L. Hadarean,
D. Jovanovic, T. King, A. Reynolds, and C. Tinelli.
CVC4. In CAV, pages 171–177, 2011.

[7] Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development – Coq’Art: The
Calculus of Inductive Constructions. Springer, 2004.

[8] R. W. Blanc. Verification of Imperative Programs in
Scala. Master’s thesis, EPFL, 2012.

[9] E. Börger and R. Stärk. Abstract State Machines.
2003.

[10] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, pages 337–340, 2008.

[11] E. W. Dijkstra. A discipline of programming.
Prentice-Hall, Englewood Cliffs, N.J, 1976.

[12] B. Dutertre and L. M. de Moura. The Yices SMT
solver, 2006.

[13] C. Flanagan and J. B. Saxe. Avoiding exponential
explosion: generating compact verification conditions.
In POPL, pages 193–205, 2001.

[14] J. Giesl, R. Thiemann, P. Schneider-Kamp, and
S. Falke. Automated termination proofs with
AProVE. In RTA, pages 210–220, 2004.

[15] M. Gordon and H. Collavizza. Forward with Hoare. In
A. Roscoe, C. B. Jones, and K. R. Wood, editors,
Reflections on the Work of C.A.R. Hoare, History of
Computing, pages 102–121. Springer, 2010.

[16] S. Grebenshchikov, N. P. Lopes, C. Popeea, and
A. Rybalchenko. Synthesizing software verifiers from
proof rules. In PLDI, pages 405–416, 2012.

[17] A. Gupta, C. Popeea, and A. Rybalchenko. Predicate
abstraction and refinement for verifying
multi-threaded programs. In POPL, pages 331–344,
2011.

[18] K. Havelund. Closing the gap between specification
and programming: VDM++ and Scala. In
Higher-Order Workshop on Automated Runtime
Verification and Debugging, 2011.

[19] C. B. Jones. Systematic Software Development using

VDM. Prentice Hall, 1986.

[20] M. Kaufmann, P. Manolios, and J. S. Moore, editors.
Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer Academic Publishers, 2000.

[21] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, 2000.

[22] E. Kneuss, V. Kuncak, I. Kuraj, and P. Suter. On
integrating deductive synthesis and verification
systems. Technical Report EPFL-REPORT-186043,
EPFL, 2013.

[23] A. S. Köksal. Constraint programming in Scala.
Master’s thesis, EPFL, 2011.

[24] A. S. Köksal, V. Kuncak, and P. Suter. Scala to the
power of Z3: Integrating SMT and programming. In
CADE, pages 400–406, 2011.

[25] K. R. M. Leino. Developing verified programs with
Dafny. In HILT, pages 9–10, 2012.

[26] R. L. London, J. V. Guttag, J. J. Horning, B. W.
Lampson, J. G. Mitchell, and G. J. Popek. Proof rules
for the programming language Euclid. Acta Inf.,
10:1–26, 1978.

[27] B. Meyer. Eiffel: the language. Prentice-Hall, 1991.

[28] G. C. Necula and P. Lee. The design and
implementation of a certifying compiler. In PLDI,
pages 333–344, 1998.

[29] G. Nelson. A generalization of Dijkstra’s calculus.
TOPLAS, 11(4):517–561, 1989.

[30] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[31] M. Odersky. Contracts for scala. In RV, pages 51–57,
2010.

[32] C. Okasaki. Red-black trees in a functional setting.
Journal of Functional Programming, 9(4):471–477,
1999.

[33] T.-H. Pham and M. Whalen. An improved
unrolling-based decision procedure for algebraic data
types. In VSTTE, 2013. To appear.

[34] P. Suter. Programming with Specifications. PhD thesis,
EPFL, 2012.

[35] P. Suter, M. Dotta, and V. Kuncak. Decision
procedures for algebraic data types with abstractions.
In POPL, 2010.

[36] P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability
modulo recursive programs. In SAS, pages 298–315,
2011.

[37] S. Tobin-Hochstadt and D. V. Horn. Higher-order
symbolic execution via contracts. In OOPSLA, pages
537–554, 2012.

[38] C. Walther and S. Schweitzer. About VeriFun. In
CADE, pages 322–327, 2003.

[39] D. N. Xu. Hybrid contract checking via symbolic
simplification. In PEPM, pages 107–116, 2012.

[40] D. N. Xu, S. L. P. Jones, and K. Claessen. Static
contract checking for Haskell. In POPL, pages 41–52,
2009.

