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Abstract
We describe techniques for synthesis and verification of re-
cursive functional programs over unbounded domains. Our
techniques build on top of an algorithm for satisfiability
modulo recursive functions, a framework for deductive syn-
thesis, and complete synthesis procedures for algebraic data
types. We present new counterexample-guided algorithms
for constructing verified programs. We have implemented
these algorithms in an integrated environment for interac-
tive verification and synthesis from relational specifications.
Our system was able to synthesize a number of useful recur-
sive functions that manipulate unbounded numbers and data
structures.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; F.3.1 [Logics and
Meaning of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords software synthesis; inductive learning; satisfia-
bility modulo theories

1. Introduction
Software construction is a difficult problem-solving activity.
It remains a largely manual effort today, despite significant
progress in software development environments and tools.
The development becomes even more difficult when the goal
is to deliver verified software, which must satisfy specifica-
tions such as assertions, pre-conditions, and post-conditions.
The thesis of this paper is that the development of verified
software can be helped through tools that add synthesis tech-
niques on top of a system with automated verification and
error-finding capabilities.
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Whereas the construction of arbitrarily complex verified
software is possible in principle, verifying programs af-
ter they have been developed is extremely time-consuming
[21, 27] and it is difficult to argue that it is cost-effective.
Our research therefore explores approaches that support in-
tegrated software construction and verification. An impor-
tant aspect of such approaches are modular verification tech-
niques which can check that a function conforms to its local
specification. In such an approach, the verification of an in-
dividual function against its specification can start before the
entire software system is completed and the resulting verifi-
cation tasks are partitioned into small pieces. As a result,
tools can provide rapid feedback that allows specifications
and implementations to be developed simultaneously. Based
on such philosophy of continuous rapid feedback, we have
developed Leon, a verifier that quickly detects errors in func-
tional programs and reports concrete counterexamples, yet
can also prove the correctness of programs [4, 46–48]. We
have integrated Leon into a web-browser-based IDE, result-
ing in a tool for convenient development of verified pro-
grams [4]. This verifier is the starting point of the tool we
present in this paper.

Moving beyond verification, we believe that the devel-
opment of verified software can benefit from techniques for
synthesis from specifications. Specifications in terms of re-
lational properties generalize existing declarative program-
ming language paradigms by allowing the statement of con-
straints between inputs and outputs [16, 22] as opposed to
always specifying outputs as functions from input to out-
puts. Unlike deterministic implementations, constraints can
be composed using conjunctions, which enables description
of the problem as a combination of orthogonal requirements.

This paper introduces synthesis algorithms, techniques
and tools that integrate synthesis into the development pro-
cess for functional programs. We present a synthesizer that
can construct the bodies of functions starting solely from
their contracts. The programs that our synthesizer produces
typically manipulate unbounded data types, such as alge-
braic data types and unbounded integers. Thanks to the use
of deductive synthesis and the availability of a verifier, when
the synthesizer succeeds with a verified output, the generated
code is correct for all possible input values.



Our synthesizer uses specifications as the description of
the synthesis problems. While it can additionally accept in-
put/output examples to illustrate the desired functionality,
we view such illustrations as a special form of input/output
relation: whereas input/output examples correspond to tests
and provide a description of a finite portion of the desired
functionality, we primarily focus on symbolic descriptions,
which ensure the desired behavior over an arbitrarily large
or even infinite domain. From such descriptions, our syn-
thesizer can automatically generate input/output examples
when needed, but can also directly transform specifications
into executable code.

A notable degree of automation in our synthesizer comes
from synthesis procedures [15, 23, 24], which compile speci-
fication fragments expressed in decidable logics. The present
work is, in fact, the first implementation of the synthesis
procedure for algebraic data types we previously developed
[46].

Note however, that, to capture a variety of scenarios in
software development, we also support the general prob-
lem of synthesis from specifications expressed in a Turing-
complete language. We achieve this using a framework for
cost-guided application of deductive synthesis rules, which
decompose the problems into subproblems.

We have integrated our synthesizer into Leon, where it
tightly cooperates with the underlying verifier, allowing it
to achieve orders of magnitude better performance than us-
ing simpler generate-and-test approaches. Techniques we
use include symbolic transformation based on synthesis pro-
cedures, as well as synthesis of recursive functions us-
ing counterexample-guided strategies. We have evaluated a
number of system architectures and trade-offs between sym-
bolic and concrete reasoning in our implementation and ar-
rived at an implementation that appears successful, despite
the large space of possible programs. We thus believe we
have achieved a new level of automation for a broad domain
of recursive functional programs. We consider as a particular
strength of our system that it can synthesize code that satis-
fies a given relational specification for all values of inputs,
and not only given input/output pairs.

Despite aiming at a high automation level, we are aware
that any general-purpose automated synthesis procedure will
ultimately face limitations: the user may wish to synthesize
larger code than the scalability of automated synthesis al-
lows, or they may wish to control the structure and not only
the observational behavior of the code to be constructed. We
therefore deploy the synthesis algorithm as an interactive as-
sistance that allows the developer to interleave manual and
automated development steps. In our system, the developer
can decompose a function and leave the subcomponents to
the synthesizer, or, conversely, the synthesizer can decom-
pose the problem, solve some of the subproblems, and leave
the remaining open cases for the developer. To facilitate such
synergy, we deploy an anytime synthesis procedure, which

maintains a ranked list of current problem decompositions.
The user can interrupt the synthesizer at any time to display
the current solution and continue manual development.

1.1 Contributions
The overall contribution of this paper is an integrated syn-
thesis and development system for automated and interac-
tive development of verified programs. A number of tech-
niques from deductive and inductive reasoning need to come
together to make such system usable.

Implemented synthesis framework. We developed a de-
ductive synthesis framework that can accept a given set of
synthesis rules and apply them according to a cost function.
The framework accepts 1) a path condition that encodes pro-
gram context, and 2) a relational specification. It returns the
function from inputs to outputs as a solution, as well as any
necessary strengthening of the precondition needed for the
function to satisfy the specification. We have deployed the
framework in a web-browser-based environment with con-
tinuous compilation and the ability to interrupt the synthesis
to obtain a partial solution in the form of a new program with
a possibly simpler synthesis problem.

Within the above framework we have implemented rules
for synthesis of algebraic data type equations and disequa-
tions [46], as well as a number of general rules for decom-
posing specifications based on their logical structure or case
splits on commonly useful conditions.

Support for recursion schemas and symbolic term genera-
tors. One of the main strengths in our framework is a new
form of counterexample-guided synthesis that arises from a
combination of several rules.

• A set of built-in recursion schemas can solve a problem
by generating a fresh recursive function. To ensure well-
foundedness we have extended our verifier with termi-
nation checking, and therefore generate only terminating
function calls using this rule.
• To generate bodies of functions, we have symbolic term

generators that systematically generate well-typed pro-
grams built from a selected set of operators (such as alge-
braic data type constructors and selectors). To test candi-
date terms against specifications we use the Leon verifier.
To speed up this search, the rule accumulates previously
found counterexamples. Moreover, to quickly bootstrap
the set of examples it uses systematic generators that can
enumerate in a fair way any finite prefix of a countable
set of structured values. The falsification of generated
bodies is done by direct execution of code. For this pur-
pose, we have developed a lightweight bytecode compiler
for our functional implementation language (a subset of
Scala), allowing us to use code execution as a component
of counterexample search in the constraint solver.

Function generation by condition abduction. We also
present and evaluate a new method, implemented as a rule



in our framework, for synthesis of recursive functions, with
the following properties.

• The most distinctive aspect of this rule is the handling of
conditional expressions. The rule synthesizes expressions
by collecting relevant terms that satisfy a notable number
of derived test inputs, and then synthesizing predicates
that imply the correctness of candidate terms. This is an
alternative to relying on splitting rules to eagerly split the
specification according to simple commonly found con-
ditions. Effectively, the additional rule performs abduc-
tion of conditions until it covers the entire input space
with a partition of conditions, where each partition is as-
sociated with a term.
• Instead of specialized term evaluators, the rule uses a

general expression enumerator based on generating all
expressions of a given type [12]. This results in a broad
coverage of expressions that the rule can synthesize. The
rule uses a new lazy enumeration algorithm for such ex-
pressions with polynomial-time access to the next term
to enumerate [26]. It filters well-typed expressions us-
ing counterexamples generated from specifications and
previous function candidates, as well as from structured
value generators.

Evaluation. We evaluate the current reach of our synthe-
sizer in fully automated mode by synthesizing recursive
functions on nested algebraic data types, including those that
perform operations on lists defined using a general mecha-
nism for algebraic data types, as well as on other custom data
types (e.g. trees) defined by the user. This paper presents a
description of all the above techniques and a snapshot of our
results. We believe that the individual techniques are inter-
esting by themselves, but we also believe that having a sys-
tem that combines them is essential to understand the poten-
tial of these techniques in addressing the difficult problem
as synthesis. To gain full experience of the feeling of such a
development process, we therefore invite readers to explore
the system themselves at

http://lara.epfl.ch/w/leon

2. Examples of Synthesis in Leon
We start by illustrating through a series of examples how de-
velopers use our system to write programs that are correct
by construction. We first illustrate our system and the nature
of interaction with it through familiar operations on (sorted)
user-defined lists, reflecting along the way on the useful-
ness of programming with specifications. We then present
a somewhat more complex example to illustrate the reach of
automated synthesis steps in our system.

2.1 List Manipulation
We start by showing how our system behaves when synthe-
sizing operations on lists. The developer partially specifies
lists using their effect on the set of elements. As shown in

sealed abstract class List
case class Cons(head: Int, tail: List) extends List
case object Nil extends List

def size(lst : List) : Int = lst match {
case Nil ⇒ 0
case Cons( ,rest) ⇒ 1 + size(rest) } ensuring( ≥ 0)

def content(lst : List) : Set[Int] = lst match {
case Nil ⇒ Set.empty
case Cons(e,rest) ⇒ Set(i) ++ content(rest) }

Figure 1. User-defined list structure with the usual size
and content abstraction functions. Here and throughout the
paper, the content abstraction computes a set of elements,
but it can easily be extended to handle multisets (bags) using
the same techniques [8] if stronger contracts are desired

Figure 1 we start from a standard recursive definition of lists
along with recursive functions computing their size as a non-
negative integer, and their content as a set of integers.

Splitting a list. We first consider the task of synthesizing
the split function as used in, e.g., merge sort. As a first
attempt to synthesize split, the developer may wish to try the
following specification:

def split(lst : List) : (List,List) = choose { (r : (List,List)) ⇒
content(lst) == content(r. 1) ++ content(r. 2)
}

Because it tends to generate simpler solutions before more
complex ones, Leon here instantly generates the following
function:

def split(lst : List) : (List,List) = (lst, Nil)

Although it satisfies the contract, it is not particularly useful.
This does show the difficult in using specifications, but the
advantage of a synthesizer like ours is that it allows the de-
veloper to quickly refine the specification and obtain a more
desirable solution. To avoid getting a single list together with
an empty one, the developer refines the specification by en-
forcing that the sizes of the resulting lists should not differ
by more than one:

def split(lst : List) : (List,List) = choose { (r : (List,List)) ⇒
content(lst) == content(r. 1) ++ content(r. 2)
&& abs(size(r. 1)−size(r. 2)) ≤ 1
}

Again, Leon instantly generates a correct, useless, program:

def split(lst : List) : (List,List) = (lst, lst)

We can refine the specification by stating that the sum of the
sizes of the two lists should match the size of the input one:

def split(lst : List) : (List,List) = choose { (r : (List,List)) ⇒
content(lst) == content(r. 1) ++ content(r. 2)
&& abs(size(r. 1) − size(r. 2)) ≤ 1

http://lara.epfl.ch/w/leon


def isSorted(lst : lst) : Boolean = lst match {
case Nil ⇒ true
case Cons( , Nil) ⇒ true
case Cons(x1, xs @ Cons(x2, )) ⇒ x1 ≤ x2 && isSorted(xs) }

def insertSorted(lst : List, v: Int): List = {
require(isSorted(lst))
choose { (r: List) ⇒

isSorted(r) && content(r) == content(lst) ++ Set(v) } }

def sort(lst : List): List = choose { (r: List) ⇒
isSorted(r) && content(r) == content(lst) }

Figure 2. Specification of sorting suitable for insertion sort

def insertSorted(lst: List, v: Int): List = {
require(isSorted(lst))
lst match {
case Nil ⇒ Cons(v, Nil)
case Cons(h, tail) ⇒
val r = insertSorted(t, v)
if (v > h) Cons(h, r)
else if (h == v) r
else Cons(v, Cons(h, t)) }

def sort(lst : List): List = lst match {
case Nil ⇒ Nil
case Cons(h, t) ⇒ insertSorted(sort(t), h) }

Figure 3. Synthesized insertion sort for Figure 2

&& (size(r. 1) + size(r. 2)) == size(lst)
}

We then finally obtain a useful split function:

def split(lst: List): (List, List) = lst match {
case Nil ⇒ (Nil, Nil)
case Cons(h, Nil) ⇒ (Nil, Cons(h, Nil))
case Cons(h1, Cons(h2, t2)) ⇒
val r = split(t2)
(Cons(h1, r. 1), Cons(h2, r. 2)) }

We observe that in this programming style, users can write
(or generate) code by conjoining orthogonal requirements,
such as constraints on the sizes and contents, which are only
indirectly related. The rapid feedback makes it possible to
go through multiple candidates rapidly, strengthening the
specification as required.

We believe this rapid feedback is mandatory when de-
veloping from specifications. One reason is that, since con-
tracts are typically partial, results obtained from under-
specifications can be remote from the desired output. Thus,
a desirable strategy is to rapidly iterate and refine specifica-
tions until the output matches the expectations.

Insertion sort. Sorting is an example often used to illus-
trate declarative descriptions of problems. We therefore con-
tinue this overview of Leon’s synthesis capabilities by show-
ing how it synthesizes an implementation of several sorting

algorithms, starting from insertion sort. Figure 2 shows the
specification of the problem. From this, Leon generates the
solution in Figure 3 within seconds and without further hints.

Advantages of Specifications. Comparing Figure 2 and
Figure 3, which have similar size, the reader may wonder
what we have gained by using specifications instead of im-
plementations. Whereas only widespread use of synthesis
systems will give the true answer, we anticipate at least three
reasons (with 3. partly following from 2.):

1. flexibility: by supporting synthesis from specifications,
we do not eliminate the ability to directly write imple-
mentations when this is more desirable, but rather add
the freedom and the expressive power to describe prob-
lems in additional ways that may be appropriate; the new
mechanism does not harm performance of readability
when not used;

2. narrower gap between requirements and software:
natural language and mathematical descriptions of struc-
tures often have the form of conjunctions that more di-
rectly map to choose constructs than to recursive func-
tions that compute the precise objects. We view the sort-
ing process as one of the many possible ways of obtain-
ing a collection that has (1) the same elements and (2) is
sorted, as opposed to thinking a particular sorting algo-
rithm.

3. reusability when introducing new operations: once we
specify key invariants and abstraction functions, we can
reuse them to define new versions of these operations;
a related concept is the ability to express orthogonal
requirements independently [14].

We next illustrate the last point using examples of reusabil-
ity as we add new operations: synthesizing removal from a
sorted list given the specification for insertion, and synthe-
sizing merge sort given a specification for sort.

Removal and merge for sorted lists. Suppose that, after
synthesizing insertion into a sorted list, the developer now
wishes to specify removal and merge of two sorted lists. Fig-
ure 4 shows the specification of these operations. Note that,
once we have gone though the process of defining the invari-
ant for what a sorted list means using function isSorted in
Figure 2, to specify these two new operations we only need
to write the concise specification in Figure 4. The system
then automatically synthesizes the full implementations in
Figure 5. We expect that the pay-off from such re-use grows
as the complexity of structures increases.

Merge sort. Suppose now that the developer wishes to en-
sure that the system, given sorting specification, synthesizes
merge sort instead of insertion sort. To do this, the devel-
oper may then, instead of the insertSorted function, try to
introduce the function merge into the scope. In our current
version of the system, Leon then synthesizes the following
code in less than ten seconds:



def delete(in1: List, v: Int) = {
require(isSorted(in1))
choose { (out : List) ⇒ isSorted(out) &&

(content(out) == content(in1) -- Set(v)) } }

def merge(in1: List, in2: List) = {
require(isSorted(in1) && isSorted(in2))
choose { (out : List) ⇒ isSorted(out) &&

(content(out) == content(in1) ++ content(in2)) } }

Figure 4. Specification of removal from a sorted list.

def delete(in1: List, v: Int): List = {
require(isSorted(in1))
in1 match {
case Nil ⇒ Nil
case Cons(h, t) ⇒ {
if (v == h) delete(t, v)
else Cons(h, delete(t, v)) }}

} ensuring {(out : List) ⇒ isSorted(out) &&

(content(out) == content(in1) -- Set(v))}

def merge(in1: List, in2: List): List = {
require(isSorted(in1) && isSorted(in2))
in1 match {
case Nil ⇒ Nil
case Cons(h, t) ⇒ union(t, insertSorted(in2, h)) }

} ensuring {(out : List) ⇒ isSorted(out) &&

(content(out) == content(in1) ++ Set(v))}

Figure 5. Implementation synthesized for Figure 4

def sort(lst : List): List = lst match {
case lst @ Nil ⇒ lst
case Cons(h, tail) ⇒ merge(Cons(h, Nil), sort(tail))
}

Although a valid synthesis output according to the given
contract, the result is actually still an implementation of the
insertion sort algorithm, because merge is called on a list
that is split in a systematically unbalanced way. Even if the
split function we synthesized or implemented before is in the
scope, the system may decide not to use it in the generated
code.

Interactive synthesis and verified refactoring. In situation
such as above, where more control is needed, we allow the
developer to refine the code, either though manual edits or by
applying synthesis rules in the form of verified refactoring
steps (such as those around which entire systems were built
[6]). For example, using our “long induction rule”, which
solves the problem by induction on the structure of list with
two base cases, with two clicks the user can refine the speci-
fication into a recursion pattern, then insert manually a local
invocation of split. The result is the following:

def sort(lst : List): List = lst match {
case Nil ⇒
choose { (res : List) ⇒

contents(res) == contents(list) && isSorted(res) }
case Cons( , Nil) ⇒
choose { (res : List) ⇒

contents(res) == contents(list) && isSorted(res) }
case ⇒ {
val p = split(list)
choose { (res : List) ⇒

contents(res) == contents(list) && isSorted(res) }
}
}

From this point, Leon can perform synthesis with automatic
search by filling out the implementation of the introduced
cases individually, to synthesize the following code, in less
than fifteen seconds:

def sort(lst : List): List = lst match {
case Nil ⇒ lst
case Cons( , Nil) ⇒ lst
case ⇒ {
val p = split(list)
merge(sort(p.fst), sort(p.snd))
}
}

This is a valid code implementing the merge sort algorithm.

2.2 Address Book
We next illustrate automated synthesis of somewhat larger
user code from specifications. In this case, the user defines
their own structure of addresses with relevant information
encapsulated in a separate Scala case class. (Note that we
replace definitions that are clear from the context by ellipses.
The full code is in available in the Appendix.)

case class Info(
address: Int,
zipcode: Int,
local: Boolean

)
case class Address(info: Info, priv: Boolean)

Addresses are categorized as private or business, accord-
ing to a boolean flag, and each address book structure con-
tains two lists, one per each category.

sealed abstract class List
case class Cons(a: Address, tail: List) extends List
case object Nil extends List

case class AddressBook(business: List, pers: List)

After defining some simple operations and predicates:

def content(l: List) : Set[Address] = . . .
def size(l: List) : Int = . . .

def size(ab: AddressBook): Int =
size(ab.business) + size(ab.pers)

def isEmpty(ab: AddressBook) = size(ab) == 0
def content(ab: AddressBook) : Set[Address] =

content(ab.pers) ++ content(ab.business)



def makeAddressBook(l: List): AddressBook = l match {
case Nil ⇒ AddressBook(Nil, l)
case Cons(a,tail) ⇒ if (allPrivate(l)) {

AddressBook(Nil, l)
} else if (allPrivate(tail)) {

AddressBook(Cons(a, Nil), tail)
} else if (a.priv) {

AddressBook(makeAddressBook(tail).business,
Cons(a, makeAddressBook(tail).pers))

} else {
AddressBook(Cons(a, makeAddressBook(tail).business),

makeAddressBook(tail).pers)
}
}

Figure 6. Synthesized AddressBook.make example

and defining an invariant that should hold for each valid
address book:

def allPrivate(l: List): Boolean = . . .
def allBusiness(l: List): Boolean = . . .

def invariant(ab: AddressBook) =
allPrivate(ab.pers) && allBusiness(ab.business)

the user can formulate a synthesis problem for constructing
an address book from a list of addresses as:

def makeAddressBook(l: List): AddressBook =
choose { (res: AddressBook) ⇒

size(res) == size(l) && invariant(res)
}

After less than nine seconds our system synthesizes the
solution in Figure 6, which has around 50 syntax tree nodes.
The solution is not minimal, but is correct; the synthesizer
introduced two additional branches due to eager approach to
infer branches of interest.

If instead of invoking the synthesizer at this point, the
user had decided to introduce two helper functions that add
an address to the private and business category of an address
book respectively:

def addToPers(ab: AddressBook, adr: Address) =
AddressBook(ab.business, Cons(adr, ab.pers))

def addToBusiness(ab: AddressBook, adr: Address) =
AddressBook(Cons(adr, ab.business), ab.pers)

the synthesizer would have found a more compact solution

def makeAddressBook(l: List): AddressBook = l match {
case Nil ⇒ AddressBook(Nil, l)
case Cons(a,tail) ⇒ if (a.priv) {

addToPers(makeAddressBook(tail), a)
} else {

addToBusiness(makeAddressBook(tail), a)
}

}

in less than five seconds.

Among other transformations on address books is merg-
ing two address books which can be implemented with the
help of a merge function similar as defined in previous ex-
amples:

def merge(l1: List, l2: List): List = . . .

Leon solves the problem given in the following definition:

def mergeAddressBooks(ab1: AddressBook,
ab2: AddressBook) = {
require(invariant(ab1) && invariant(ab2))
choose {

(res: AddressBook) ⇒ invariant(res) &&

(sizeA(res) == sizeA(ab1) + sizeA(ab2))
}
}

in less than nine seconds while outputting a compact and
valid solution:

def merge(l1: List, l2: List): List =
AddressBook(merge(ab1.business, ab2.business),

merge(ab2.pers, ab1.pers))

3. Background: the Verifier within Leon
The results presented in this paper focus on the synthesis
component of Leon. They rely in important ways on the un-
derlying verifier which was the subject of previous work
[4, 48]. The language of Leon is a subset of Scala, as il-
lustrated through the examples of Section 2. Besides inte-
gers and user-defined recursive data types, Leon supports
booleans, sets and maps.

Solver algorithm. At the core of Leon’s verifier is an al-
gorithm to reason about formulas that include user-defined
recursive functions, such as size, content, and isSorted in
Section 2. The algorithm proceeds by iteratively examin-
ing longer and longer execution traces through the recursive
functions. It alternates between an over-approximation of the
executions, where only unsatisfiability results can be trusted,
and an under-approximation, where only satisfiability re-
sults can be concluded. The status of each approximation is
checked using the state-of-the-art SMT solver Z3 from Mi-
crosoft Research [7]. The algorithm is a semi-decision pro-
cedure, meaning that it is theoretically complete for coun-
terexamples: if a formula is satisfiable, Leon will eventually
produce a model [48]. Additionally, the algorithm works as
a decision procedure for a certain class of formulas [47].

In the past, we have used this core algorithm in the con-
text of verification [48], but also as part of an experiment in
providing run-time support for declarative programming us-
ing constructs similar to choose [22]. We have in both cases
found the performance in finding models to be suitable for
the task at hand. 1

1 We should also note that since the publication of [48], our engineering
efforts as well as the progress on Z3 have improved running times by 40%.



Throughout this paper, we will assume the existence of an
algorithm for deciding formulas containing arbitrary recur-
sive functions. Whenever completeness is an issue, we will
mention it and describe the steps to be taken in case of, e.g.
timeout.

Compilation-based evaluator. Another component of
Leon on which we rely in this paper is an interpreter based
on on-the-fly compilation to the JVM. Function definitions
are typically compiled once and for all, and can therefore be
optimized by the JIT compiler. This component is used dur-
ing the search in the core algorithm, to validate models and
to sometimes optimistically obtain counterexamples. We use
it to quickly reject candidate programs during synthesis (see
sections 5 and 6).

Ground term generator. Our system also leverages Leon’s
generator of ground terms and its associated model finder.
Based on a generate-and-test approach, it can generate
small models for formulas by rapidly and fairly enu-
merating values of any type. For instance, enumerating
Lists will produce a stream of values Nil(), Cons(0, Nil()),
Cons(0, Cons(0, Nil())), Cons(1, Nil()), . . .

4. Deductive Synthesis Framework
The approach to synthesis we follow in this paper is to derive
programs by a succession of independently validated steps.
In this section, we briefly describe the formal reasoning
behind these constructive steps and provide some illustrative
examples. Whereas an earlier (purely theoretical) version of
the framework was presented in [15], the new framework
supports the notion of path condition, and is the first time
we report on the practical realization of this framework.

4.1 Synthesis Problems
A synthesis problem is given by a predicate describing a
desired relation between a set of input and a set of output
variables, as well as the context (program point) at which
the synthesis problem appears. We represent such a problem
as a quadruple

Jā 〈Π � φ〉 x̄K

where:

• ā denotes the set of input variables,
• x̄ denotes the set of output variables,
• φ is the synthesis predicate, and
• Π is the path condition to the synthesis problem.

The free variables of φ must be a subset of ā ∪ x̄. The
path condition denotes a property that holds for input at the
program point where synthesis is to be performed, and the
free variables of Π should therefore be a subset of ā.

As an example, consider the following call to choose:

def f(a : Int) : Int = {
if(a ≥ 0) {

choose((x : Int) ⇒ x ≥ 0 && a + x ≤ 5)
} else . . .
}

The representation of the corresponding synthesis problem
is:

Ja 〈a ≥ 0 � x ≥ 0 ∧ a+ x ≤ 5〉 xK (1)

4.2 Synthesis Solutions
We represent a solution to a synthesis problem as a pair

〈P | T̄ 〉

where P is the precondition, and T̄ is the program term.
The free variables of both P and T̄ must range over ā. The
intuition is that, whenever the path condition and the precon-
dition are satisfied, evaluating φ[x̄ 7→ T̄ ] should evaluate to
true, i.e. T̄ are realizers for a solution to x̄ in φ given the
inputs ā. Furthermore, for a solution to be as general as pos-
sible, the precondition must be as weak as possible.

Formally, for such a pair to be a solution to a synthesis
problem, denoted as

Jā 〈Π � φ〉 x̄K ` 〈P | T̄ 〉

the following two properties must hold:

• Relation refinement:

Π ∧ P |= φ[x̄ 7→ T̄ ]

This property states that whenever the path- and precon-
dition hold, the program T̄ can be used to generate values
for the output variables x̄ such that the predicate φ is sat-
isfied.
• Domain preservation:

Π ∧ (∃x̄ : φ) |= P

This property states that the precondition P cannot ex-
clude inputs for which an output would exist such that φ
is satisfied.

As an example, a valid solution to the synthesis problem
(1) is given by:

〈a ≤ 5 | 0〉

The precondition a ≤ 5 characterizes exactly the input
values for which a solution exists, and for all such values,
the constant 0 is a valid solution term for x. Note that
the solution is in general not unique; alternative solutions
for this particular problem include, for example, 〈a ≤ 5 |
5− a〉, or 〈a ≤ 5 | if(a < 5) a+ 1 else 0〉.

A note on path conditions. Strictly speaking, declaring
the path condition separately from the precondition does
not add expressive power to the representation of synthe-
sis problems: one can easily verify that the space of solu-
tion terms for Jā 〈Π � φ〉 x̄K is isomorphic to the one for



Jā 〈true� Π ∧ φ〉 x̄K. Note however that with the second
representation, solving the synthesis problem would always
result in a precondition at least as strong as Π, since it ap-
pears in the synthesis predicate and does not contain any out-
put variables. Keeping the path condition explicit thus avoids
computing this redundant information, an effect we found to
be important in our implementation.

4.3 Inference Rules for Synthesis
Building on our correctness criteria for synthesis solutions,
we now describe inference rules for synthesis. Such rules de-
scribe relations between synthesis problems, capturing how
some problems can be solved by reduction to others. We
have shown in previous work how to design a set of rules to
ensure completeness of synthesis for a well-specified class
of formulas, e.g. integer linear arithmetic relations [23] or
simple term algebras [15]. In the interest of remaining self-
contained, we shortly describe some generic rules. We then
proceed to presenting inference rules which allowed us to
derive synthesis solutions to problems that go beyond such
decidable domains.

The validity of each rule can be established independently
from its instantiations, or from the contexts in which it is
used. This in turn guarantees that the programs obtained
by successive applications of validated rules are correct by
construction.

Generic reductions. As a first example, consider the rule
ONE-POINT in Figure 7. It reads as follows; “if the predicate
of a synthesis problem contains a top-level atom of the form
x0 = t, where x0 is an output variable not appearing in
the term t, then we can solve a simpler problem where t is
substituted for x0, obtain a solution 〈P | T̄ 〉 and reconstruct
a solution for the original one by first computing the value
for t and then assigning as the result for x0”.

Conditionals. In order to synthesize programs that include
conditional expressions, we need rules such as CASE-SPLIT
in Figure 7. The intuition behind CASE-SPLIT is that a dis-
junction in the synthesis predicate can be handled by an if-
then-else expression in the synthesized code, and each sub-
problem (corresponding to predicates φ1 and φ2 in the rule)
can be treated separately. As one would expect, the precon-
dition for the final program is obtained by taking the disjunc-
tion of the preconditions for the subproblems. This matches
the intuition that the disjunctive predicate should be realiz-
able if and only if one of its disjuncts is. Note as well that
even though the disjunction is symmetrical, in the final pro-
gram we necessarily privilege one branch over the other one.
This has the interesting side-effect that we can, as shown
in the rule, add the negation of the precondition P1 to the
path condition of the second problem. This has the poten-
tial of triggering simplifications in the solution of φ2. An
extreme case is when the first precondition is true and the
“else” branch becomes unreachable.

The CASE-SPLIT rule as we presented it applies to dis-
junctions in synthesis predicates. We should note that it is
sometimes desirable to explicitly introduce such disjunc-
tions. For example, our system includes rules to introduce
branching on the equality of two variables, to perform case
analysis on the types of variables (pattern-matching), etc.
These rules can be thought of as introducing first a disjunct,
e.g. a = b ∨ a 6= b, then applying CASE-SPLIT.

Recursion schemas. We now show an example of an in-
ference rule that produces a recursive function. A common
paradigm in functional programming is to perform a compu-
tation by recursively traversing a structure. The rule LIST-
REC captures one particular form of such a traversal for the
List recursive type used in the examples of Section 2. The
goal of the rule is to derive a solution consists of a single in-
vocation to a recursive function rec. The recursive function
has the following form:

def rec(a0, ā) = {
require(Π2)
a0 match {
case Nil ⇒ T̄1

case Cons(h, t) ⇒
lazy val r̄ = rec(t, ā)
T̄2

}
} ensuring(r̄ ⇒ φ[x̄ 7→ r̄])

where a0 is of type List. The function iterates over the list
a0 while preserving the rest of the input variables (the envi-
ronment) ā. Observe that its postcondition corresponds ex-
actly to the synthesis predicate of the original problem. The
premises of the rule are as follows.

• The condition (Π1 ∧ P ) =⇒ Π2 ensures that the initial
call to rec in the final program satisfy its precondition.
We can often let P ≡ true and Π2 ≡ Π1.
• The condition Π2[a0 7→ Cons(h,t)] =⇒ Π2[a0 7→ t]

states that the precondition of rec should be inductive,
i.e. whenever it holds for a list, it should also hold for its
tail. This is necessary to ensure that the recursive call will
satisfy the precondition.
• The subproblem Jā 〈Π2 � φ[a0 7→ Nil]〉 x̄K corresponds

to the base case (Nil), and thus does not contain the input
variable a0.
• The final subproblem is the most interesting, and corre-

sponds to the case where a0 is a Cons, represented by
the fresh input variables h and t. Because the recursive
structure is fixed, we can readily represent the result of
the invocation rec(t,ā) by another fresh variable r. We
can assume that the postcondition of rec holds for that
particular call, which we represent in the path condition
as φ[a0 7→ t, x̄ 7→ r̄]. The rest of the problem is obtained
by substituting a0 for Cons(h,t) in the path condition and
in the synthesis predicate.



ONE-POINT
Jā 〈Π � φ[x0 7→ t]〉 x̄K ` 〈P | T̄ 〉 x0 /∈ vars(t)

Jā 〈Π � x0 = t ∧ φ〉 x0 , x̄K ` 〈P | val x̄ := T̄ ; (t , x̄)〉
GROUND

M |= φ vars(φ) ∩ ā = ∅
Jā 〈Π � φ〉 x̄K ` 〈true | M〉

CASE-SPLIT
Jā 〈Π � φ1〉 x̄K ` 〈P1 | T̄1〉 Jā 〈Π ∧ ¬P1 � φ2〉 x̄K ` 〈P2 | T̄2〉

Jā 〈Π � φ1 ∨ φ2〉 x̄K ` 〈P1 ∨ P2 | if(P1) {T̄1} else {T̄2}〉

LIST-REC

(Π1 ∧ P ) =⇒ Π2 Π2[a0 7→ Cons(h,t)] =⇒ Π2[a0 7→ t] Jā 〈Π2 � φ[a0 7→ Nil]〉 x̄K ` 〈true | T̄1〉
Jr̄ , h , t , ā 〈Π2[a0 7→ Cons(h,t)] ∧ φ[a0 7→ t, x̄ 7→ r̄] � φ[a0 7→ Cons(h,t)]〉 x̄K ` 〈true | T̄2〉

Ja0 , ā 〈Π1 � φ〉 x̄K ` 〈P | rec(a0,ā)〉

Figure 7. Selected synthesis inference rules for one-point rule, static computation, and splitting, as well as an illustrative
instance (for lists) of a general rule for structural recursion on algebraic data types (see text for the definition of rec)

LIST-REC generates programs that traverse lists. Our sys-
tem automatically generates such a rule for each recursive
datatype occurring in the context of synthesis. The rule for
a binary tree type, for example, will spawn a subproblem
for the Leaf case and another problem with two recursive
calls for the Node case. Our rule for integers uses a recursion
scheme that approaches zero for both negative and positive
integers.

Terminal rules. For a synthesis problem to be completely
solved, some rules must be terminal, that is, not generate any
subproblem. Terminal rules are by definition the only ones
which can close a branch in the derivation tree.

One such example is GROUND in Figure 7. The rule
states that if a synthesis problem does not refer to any input
variable, then it can be treated as a satisfiability problem:
any model for the predicate φ can then be used as a ground
solution term for x̄.

All terminal rules that we consider have the form:

TERMINAL
∀ā : Π =⇒ φ[x̄ 7→ T̄ ]

Jā 〈Π � φ〉 x̄K ` 〈true | T̄ 〉

which essentially encodes relation refinement. Domain
preservation is automatically enforced by considering only
solutions where the precondition is true, as the rule shows.
While we could in principle devise algorithms that try to
solve for a program term and a minimal precondition at the
same time, we found the approach of deriving the precon-
ditions using non terminal rules only to be sufficient for our
test cases. The remaining challenge is therefore to efficiently
compute T̄ given Π and φ. Sections 5 and 6 detail two algo-
rithms to this effect.

5. Symbolic Term Exploration Rule
In this section, we describe the first of our two most impor-
tant terminal rules, which is responsible for closing many of
the branches in derivation trees. We call it Symbolic Term
Exploration (STE).

The core idea behind STE is to symbolically represent
many possible terms (programs), and to iteratively prune
them out using counterexamples and test case generation
until either 1) a valid term is proved to solve the synthesis
problem or 2) all programs in the search space have been
shown to be inadequate. Since we already have rules that
take care of introducing branching constructs or recursive
functions, we focus STE on the search for terms consisting
only of constructors and calls to existing functions.

Recursive generators. We start from a universal non-
deterministic program that captures all the (deterministic)
programs which we wish to consider as potential solutions.
We then try to resolve the non-deterministic choices in such
a way that the program realizes the desired property. Resolv-
ing the choices consists in fixing some values in the pro-
gram, which we achieve by running a counterexample driven
search.

We describe our non-deterministic programs as a set of
recursive non-deterministic generators. Intuitively, a gener-
ator for a given type is a program that produces arbitrary
values of that type. For instance, a generator for positive in-
tegers could be given by:

def genInt() : Int = if(?) 0 else (1 + genInt())

where ? represents a non-deterministic boolean value. Sim-
ilarly a non-deterministic generator for the List type could
take the form:

def genList() : List = if(?) Nil else Cons(genInt(), genList())

It is not required that generators can produce every value
for a given type; we could hypothesize for instance that our
synthesis solutions will only need some very specific con-
stants, such as 0, 1 or −1. What is more likely is that our
synthesis solutions will need to use input variables and ex-
isting functions. Our generators therefore typically include
variables of the proper type that are accessible in the synthe-
sis environment. Taking these remarks into account, if a and
b are integer variables in the scope, and f is a function from
Int to Int, a typical generator for integers would be:



def genInt() : Int = if(?) 0 else if(?) 1 else if(?) −1
else if(?) a else if(?) b else f(genInt())

From generators to formulas. Generators can in principle
be any function with unresolved non-deterministic choices.
For the sake of the presentation, we assume that they are
“flat”, that is, they consist of a top-level non-deterministic
choice between n alternatives. (Note that the examples given
above all have this form.)

Encoding a generator into an SMT term is done as fol-
lows: introduce for each invocation of a generator an un-
interpreted constant c of the proper type, and for each non-
deterministic choice as many boolean variables b̄ as there are
alternatives. Encode that exactly one of the b̄ variables must
be true, and constrain the value of c using the b̄ variables.

Recursive invocations of generators can be handled simi-
larly, by inserting another c variable to represent their value
and constraining it appropriately. Naturally, these recursive
instantiations must stop at some point: we then speak of
an instantiation depth. As an example, the encoding of the
genList generator above with an instantiation depth of 1 and
assuming for simplicity that genInt only generates 0 or a is:

(b1 ∨ b2) ∧ (¬b1 ∨ ¬b2)

∧ b1 ⇒ c1 = Nil ∧ b2 ⇒ c1 = Cons(c2,c3)

∧ (b3 ∨ b4) ∧ (¬b3 ∨ ¬b4)

∧ b3 ⇒ c2 = 0 ∧ b4 ⇒ c2 = a

∧ (b5 ∨ b6) ∧ (¬b5 ∨ ¬b6)

∧ b5 ⇒ c3 = Nil ∧ b6 ⇒ c3 = Cons(c4,c5)

∧ ¬b6

The clauses encode the following possible values for c1:
Nil, Cons(0, Nil) and Cons(a, Nil). Note the constraint ¬b6
which enforces the instantiation depth of 1, by preventing the
values beyond that depth (namely c4 and c5) to participate in
the expression.

For a given instantiation depth, a valuation for the b̄ vari-
ables encodes a determinization of the generators, and as a
consequence a program. We solve for such a program by
running a refinement loop.

Refinement loop: discovering programs. Consider a syn-
thesis problem Jā 〈Π � φ〉 x̄K, where we speculate that a
generator for the types of x̄ can produce a program that real-
izes φ. We start by encoding the non-deterministic execution
of the generator for a fixed instantiation depth (typically, we
start with 0). Using this encoding, the problem has the form:

φ ∧B(ā, b̄, c̄) ∧ C(c̄, x̄) (2)

where φ is the synthesis problem, B is the set of clauses
obtained by encoding the execution of the generator and C
is a set of equalities tying x̄ to a subset of the c̄ variables.
Note that by construction, the values for c̄ (and therefore for
x̄) are uniquely determined when ā and b̄ are fixed.

We start by finding values for ā and b̄ such that (2) holds.
If no such values exist, then our generators at the given
instantiation depth are not expressive enough to encode a
solution to the problem. Otherwise, we extract for the model
the values b̄0. They describe a candidate program, which we
put to the test.

Refinement loop: falsifying programs. We search for a
solution to the problem:

¬φ ∧B(ā, b̄0, c̄) ∧ C(c̄, x̄) (3)

Note that b̄0 are constants, and that c̄ and x̄ are therefore
uniquely determined by ā this intuitively comes from the
fact that b̄0 encodes a deterministic program, that c̄ encodes
intermediate values in the execution of that program, and
that x̄ encodes the result. With this in mind, it becomes clear
that we are really solving for ā.

If no such ā exist, then we have found a program that
realizes φ and we are done. If on the other hand we can
find ā0, then this constitutes an input that witnesses that our
program does not meet the specification. In this case, we can
discard the program by asserting ¬

∧
b̄, and going back to

(2).
Eventually, because the set of possible assignments to b̄ is

finite (for a given instantiation depth) this terminates. If we
have not found a program, we can increase the instantiation
depth and try again. When the maximal depth is reached, we
give up.

Filtering with concrete execution. While termination is in
principle guaranteed by the successive elimination of pro-
grams in the refinement loop, the formula encoding the non-
deterministic term typically grows exponentially as the in-
stantiation depth increases. As the number of candidates
grows, the difficulty for the solver to satisfy (2) or (3) also
increases. As an alternative to symbolic elimination, we can
often use concrete execution on a set of input tests to rule out
many programs.

To execute these such concrete tests, we first generate a
set of input candidates that satisfy the path condition. For
this, we use Leon’s ground term generator (see Section 3).
We then test candidate programs on this set of inputs. Pro-
grams that fail on at least one input can be discarded.

To make testing efficient in our implementation, we com-
pile the expression φ[x̄ 7→ genX(b̄)] on the fly to JVM byte-
code, where genX denotes the non-deterministic generator
for the types of x̄, and b̄ are boolean literals that control the
decisions in genX. In other words, the expression uses both
the inputs ā and an assignment to b̄ to compute whether the
program represented by the choices b̄ succeeds in producing
a valid output for ā.

This encoding of all candidate programs into a single ex-
ecutable function allows us to rapidly test and potentially
discard hundreds or even thousands of candidates within a
fraction of a second. Whenever the number of discarded can-
didates is deemed substantial, we regenerate a new formula



for (2) with much fewer boolean variables and continue from
there. The speedup achieved through filtering with concrete
executions is particularly important when STE is applied to
a problem it cannot solve. In such cases, filtering often rules
out all candidate programs and symbolic reasoning is never
applied.

6. Condition Abduction Rule
We next describe our second major terminal rule, which
synthesizes recursive functions with conditional statements.
We refer to the underlying technique (and its implementation
as a rule in our system) as Condition Abduction (CA).

We assume that we are given a function header and a post-
condition, and that we aim to synthesize a recursive function
body. The body expression must be 1) a well-typed term with
respect to the context of the program and 2) valid according
to the imposed formal specification. An approach to solv-
ing such a synthesis problem could be based on searching
the space of all expressions that can be built from all decla-
rations visible at the program point, filtering out those that
do not type-check or return the desired type, and find one
that satisfies the given formal specification. Unless the pro-
cess of generating candidate solutions is carefully guided,
the search becomes unfeasible (as we have observed in pre-
vious versions of our tool).

6.1 Condition Abduction
Our idea for guiding the search and incremental construction
of correct expressions is influenced by abductive reasoning
[18, 19]. Abductive reasoning, sometimes also called “infer-
ence to the best explanation”, is a method of reasoning in
which one chooses a hypothesis that would explain the ob-
served evidence in the best way. The motivation for applying
abductive reasoning to program synthesis comes from exam-
ining implementations of practical purely functional, recur-
sive algorithms. The key observation is that recursive func-
tional algorithms often consist of a top-level case analysis
expression (if-then-else or pattern matching) with recursive
calls in the branches. This pattern is encoded with a branch-
ing control flow expression that partitions the space of input
values such that each branch represents a correct implemen-
tation for a certain partition. Such partitions are defined by
conditions that guard branches in the control flow.

This allows us to synthesize branches separately, by
searching for implementations that evaluate correctly only
for certain inputs, thus reducing the search space. Rather
than speculatively applying CASE-SPLIT rule to obtain sub-
problems and finding solutions for each branch by case anal-
ysis (as described in Section 4), this idea applies a similar
strategy in the reverse order—first obtaining a candidate pro-
gram and then searching for a condition that makes it correct.
Abductive reasoning can guess the condition that defines a
valid partition, i.e. “abduce” the explanation for a partial im-
plementation with respect to a given candidate program. Our

Algorithm 1 Synthesis with condition abduction
Require: path condition Π, predicate φ, a collection of

expressions s . synthesis problem Jā 〈Π � φ〉 x̄K
1: p′ = true . maintain the current partition
2: sol = (λx.x) . maintain a partial solution
3: M = SAMPLEMODELS(ā) . set of example models
4: repeat
5: get a set of expressions E from s . candidates
6: for each e in E do . count passed examples pe for e
7: pe = |{m ∈M | e(m) is correct}| . evaluate
8: r̄ = arg max e∈E pe . the highest ranked expression
9: if solution 〈Π ∧ p′ | r̄〉 is valid then

10: return 〈Π | (sol r̄)〉 . a solution is found
11: else
12: extract new counterexample model m
13: M =M∪m . accumulate examples
14: c = BRANCHSYN(r̄, p, q, s) . call Algorithm 2
15: if c 6= FALSE then . a branch is synthesized
16: sol = (λx. (sol (if c then r̄ else x)))
17: p′ = p′ ∧ ¬c . update current partition
18: until s is empty

rule CA progressively applies this technique and enables ef-
fective search and construction of a control flow expression
that represents a correct implementation for more and more
input cases, eventually constructing an expression that is a
solution to the synthesis problem.

6.2 Synthesizing Conditional Recursive Functions
Algorithm 1 presents our rule that employs a new technique
for guiding the search with ranking and filtering based on
counterexamples, as well as constructing expressions from
partially correct implementations.

The algorithm applies the idea of abducing conditions to
progressively synthesize and verify branches of a correct im-
plementation for an expanding partition of inputs. The input
to the algorithm is a path condition Π, a predicate φ (defined
by synthesis problem Jā 〈Π � φ〉 x̄K), and a collection of
expressions s (see Section 6.3 below for details on how we
obtain a suitable s in our implementation).

Condition p′ defines which inputs are left to consider at
any given point in the algorithm; these are the inputs that
belong to the current partition. The initial value of p′ is
true, so the algorithm starts with a partition that covers the
whole initial input space constrained only by the path con-
dition Π. Let p1, . . . , pk, where k > 0, be conditions ab-
duced up to a certain point in the algorithm. Then p′ repre-
sents the conjunction of negations of abduced conditions, i.e.
p′ = ¬p1 ∧ . . . ∧ ¬pk. Together with the path condition, it
defines the current partition which includes all input values
for which there is no condition abduced (nor correct imple-
mentation found). Thus, the guard condition for the current
partition is defined by Π ∧ p′. The algorithm maintains the



partial solution sol, encoded as a function. sol encodes an
expression which is correct for all input values that satisfy
any of the abduced conditions and this expression can be re-
turned as a partial solution at any point. Additionally, the al-
gorithm accumulates example models in the setM. Ground
term generator, described in Section 3, is used to construct
the initial set of models inM. To construct a model, for each
variable in ā, the algorithm assigns a value sampled from the
ground term generator. Note that more detailed discussion
on how examples are used to guide the search is deferred to
Section 6.3.

The algorithm repeats enumerating all possible expres-
sions from the given collection until it finds a solution. In
each iteration, a batch of expressions E is enumerated and
evaluated on all models from M. The results of such eval-
uation are used to rank expressions from E. The algorithm
considers the expression of the highest rank r̄ as a candidate
solution and checks it for validity. If r̄ represents a correct
implementation for the current partition, i.e. if 〈Π ∧ p′ | r̄〉
is a valid solution, then the expression needed to complete
a valid control flow expression is found. The algorithm re-
turns it as solution for which Jā 〈Π � φ〉 x̄K ` 〈Π | (sol r̄)〉
holds. Otherwise, the algorithm extracts the counterexample
model m, adds it to the set M, and continues by trying to
synthesize a branch with expression r̄ (it does so by calling
Algorithm 2 which will be explained later). If BRANCHSYN
returns a valid branch condition, the algorithm updates the
partial solution to include the additional branch (thus extend-
ing extending the space of inputs covered by the partial so-
lution), and refines the current partition condition. The new
partition condition reduces the synthesis to a subproblem,
ensuring that the solution in the next iteration covers cases
where c does not hold. The algorithm eventually, given the
appropriate terms from s, finds an expression that forms a
complete correct implementation for the synthesis problem.

Algorithm 2 Synthesize a branch
Require: expression r̄, condition p′, predicate q, and a

collection of expressions s . passed from Algorithm 1
1: function BRANCHSYN(r̄, p′, q, s)
2: M′ = ∅ . set of accumulated counterexamples
3: get a set of expressions E′ from s . candidates
4: for each c in E′ do
5: if for each model m inM′, c(m) = false then
6: if solution 〈Π ∧ c | r̄〉 is valid then
7: return c . a condition is abduced
8: else
9: extract the new counterexample model m

10: M′ =M′ ∪m . accumulate counterexamples
11: return FALSE . no condition is found

Algorithm 2 tries to synthesize a new branch by abducing
a valid branch condition c. It does so by enumerating a set
of expressions E′ from s and checking whether it can find a
valid condition expression, that would guard a partition for

which the candidate expression r̄ is correct.The algorithm
accumulates counterexample models in M′ and considers
a candidate expression c only if it prevents all accumulated
counterexamples. The algorithm checks this by evaluating c
on m, i.e. c(m), for each accumulated counterexample m.
If a candidate expression c is not filtered out, the algorithm
checks if c represents a valid branch condition, i.e. whether
〈Π ∧ c | r̄〉 is a valid solution. If yes, the algorithm returns
c which, together with r̄, comprises a valid branch in the
solution to Jā 〈Π � φ〉 x̄K. Otherwise, it adds a new coun-
terexample model to M′ and continues with the search. If
no valid condition is in E′, the algorithm returns FALSE.

6.3 Organization of the Search
For getting the collection of expressions s, CA uses a term
enumerator that generates all well-typed terms constructible
from the datatypes and functions in the scope of the syn-
thesis problem (in our implementation, we reused the typed
expression enumerator from the InSynth tool [12, 26]).

The completeness property of such generators ensures
systematic enumeration of all candidate solutions that are
defined by the set of given type constraints. For verification,
CA uses the Leon verifier component, that allows checking
validity of expressions that are supported by the underlying
theories and obtaining counterexample models.

The context of CA as a rule in the Leon synthesis frame-
work imposes limits on the portion of search space explored
by each instantiation. This allows incremental and system-
atic progress in search space exploration and, due to the mix-
ture with other synthesis rules, offers benefits in both expres-
siveness and performance of synthesis. CA offers flexibility
in adjusting necessary parameters and thus a fine-grain con-
trol over the search. For our experiments, the size of candi-
date sets of expressions enumerated in each iteration n is 50
(and doubled in each iteration) for Algorithm 1 and 20 for
Algorithm 2.

Using (counter-)examples. A technique that brings signif-
icant performance improvements when dealing with large
search spaces is guiding the search and avoiding consider-
ing candidate expressions according to the information from
examples generated during synthesis. After checking an un-
satisfiable formula, CA queries Leon’s verifier for the wit-
ness model. It accumulates such models and uses them to
narrow down the search space.

Algorithm 2 uses accumulated counterexamples to filter
out unnecessary candidate expressions when synthesizing a
branch. It makes sense to consider a candidate expression
for a branch condition, c, for a check whether c makes r̄ a
correct implementation, only if c prevents all accumulated
counterexamples that already witnessed unsatisfiability of
the correctness formula for r̄, i.e. if ∀m ∈ M′. c → ¬m.
Otherwise, if ∃m ∈ M′.¬(c → ¬m), then m is a valid
counterexample to the verification of 〈Π ∧ c | r̄〉. This ef-
fectively guides the search by the results of previous veri-



fication failures while filtering out candidates before more
expensive verification check are made.

Algorithm 1 uses accumulated models to quickly test
and rank expressions by evaluating models according to the
specification. The current set of candidate expressions E is
evaluated on the set of accumulated examplesM and the re-
sults of such evaluation are used to rank the candidates. We
call an evaluation of a candidate e on a model m correct, if
m satisfies path condition Π and the result of the evaluation
satisfies given predicate φ. The algorithm counts the num-
ber of correct evaluations, ranks the candidates accordingly,
and considers only the candidate of the highest rank. The ra-
tionale is that the more correct evaluations, the more likely
the candidate represents a correct implementation for some
partition of inputs. Note that evaluation results may be used
only for ranking but not for filtering, because each candidate
may represent a correct implementation for a certain parti-
tion of inputs, thus incorrect evaluations are expected even
for valid candidates. Because the evaluation amounts to exe-
cuting the specification, this technique is efficient in guiding
the search towards correct implementations while avoiding
unnecessary verification checks.

7. Exploring the Space of Subproblems
In the previous three sections, we described a general formal
framework in which we can describe what constitutes a syn-
thesis problem and a solution. We have shown rules that de-
compose problem into pieces and presented two more com-
plex terminal rules that solve larger sub-problems: symbolic
term exploration and condition-abduction. In this section, we
describe how all these rules are instantiated in practice, and
how they work together to derive a complete solution to a
synthesis problem.

Inference rules are non-deterministic by nature. They jus-
tify the correctness of a solution, but do not by themselves
describe how one finds that solution. Our search for a solu-
tion alternates between considering 1) which rules apply to
given problems, and 2) which subproblems are generated by
rule instantiations.

The task of finding rules that apply to a problem intu-
itively correspond to finding an inference rule whose con-
clusion matches the structure of a problem. For example,
to apply GROUND, the problem needs to mention only out-
put variables. Similarly, to apply LIST-REC to a problem, it
needs to contain at least one input variable of type List.

Computing the subproblems resulting from the applica-
tion of a rule is in general straightforward, as they corre-
spond to problems appearing in its premise. The GROUND
rule, for example, generates no subproblem, while LIST-REC
generates two.

AND/OR search. To solve one problem, it suffices to find
a complete derivation from one rule application to that prob-
lem. However, to fully apply a rule, we need to solve all
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Figure 8. An AND/OR search tree used to illustrate our
search mechanism. Circles are OR nodes and represent prob-
lems, while boxes are AND nodes and represent our rule ap-
plications. Nodes in grey are closed (solved).

generated subproblems. This corresponds to searching for a
closed branch in an AND/OR tree [31].

We now describe the expansion of such a tree using an
example. Consider the problem of removing a given element
e from a list a. In our logical notation –using α as an abbre-
viation for content– the problem is:

Ja , e 〈true� α(x) = α(a) \ {e}〉 xK

We denote this problem by 1 in the tree of Figure 8. While
we haven’t given an exhaustive list of all rules used in our
system, it is fair to assume that more than one can apply to
this problem. For example, we could case-split on the type
of a, or apply LIST-REC to a. We represent these two options
by A and B respectively in the tree.

Following the option B and applying LIST-REC with the
path condition Π2 ≡ true trivially satisfies the first two
premises of the rules, and generates two new problems (4
and 5). Problem 5 is:

Je 〈true� α(x) = α(Nil) \ {e}〉 xK

where the predicate simplifies to α(x) = ∅. This makes it
possible to apply the GROUND rule (node G). This generates
no subproblem, and closes the subbranch with the solution
solution 〈true | Nil〉. Problem 4 has the form:

Jr , h , t , e 〈α(r) = α(t) \ {e}�
α(x) = α(Cons(h,t)) \ {e}〉 xK

Among the many possible rule applications, we can choose
to case-split on the equality h = e (node F). This generates
two subproblems. Problem 6

Jr , h , t , e 〈α(r) = α(t) \ {e} ∧ e = h�

α(x) = α(Cons(h,t)) \ {e}〉 xK

and a similar problem 7, where e 6= h appears in the path
condition instead of e = h. Both subproblems can be solved
by using a technique we will describe in Section 5 to derive
a term satisfying the synthesis predicate, effectively closing



the complete branch from the root. The solutions for prob-
lem 6 and 7 are 〈true | r〉 and 〈true | Cons(h,r)〉 respec-
tively. A complete reconstruction of the solution given by
the branch in gray yields the program:

def rec(a : List) : List = a match {
case Nil ⇒ Nil
case Cons(h,t) ⇒
val r = rec(t)
if(e == h) r
else Cons(h,r)

}

In the interest of space, we have only described the
derivations that lead to the solution. In practice, not all cor-
rect steps are taken in the right order. The interleaving of
expansions of AND and OR nodes is driven by the estimated
cost of problems and solutions.

Cost models. To drive the search, we assign to each prob-
lem and to each rule application an estimated cost, which
is supposed to under-approximate the actual final cost of a
closed branch. For OR nodes (problems), the cost is sim-
ply the minimum of all remaining viable children, while for
AND nodes (rule applications) we take the sum of the cost
of each children plus a constant. That constant intuitively
corresponds to the extra complexity inherent to a particular
rule.

A perfect measure for cost would be the running time
of the corresponding program. However, this is particularly
hard to estimate, and valid under-approximations would
most likely be useless. We chose to measure program size
instead, as we expect it to be a reasonable proxy for com-
plexity. We measure the size of the program as the number of
branches, weighted by their proximity to the root. We found
this to have a positive influence on the quality of solutions,
as it discourages near-top-level branching.

Using this metric, the cost inherent to a rule application
roughly corresponds to the extra branches it introduces in the
program. We use a standard algorithm for searching for the
best solution [31], and the search thus always focuses on the
current most promising solution. In our example in Figure 8,
we could imagine that after the case split at F, the B branch
temporarily became less attractive. The search then focuses
for a while on the A branch, until expansion on that side (for
example, by case-splitting on the type of the list) reaches a
point where the minimal possible solution is worse than the
B branch. We note that the complete search takes about two
seconds.

Anytime synthesis. Because we maintain the search tree
and know the current minimal solution at all times, we can
stop the synthesis at any time and obtain a partial program
that is likely to be good. This option is available in our im-
plementation, both from the console mode and the web in-
terface. In such cases, Leon will return a program containing
new invocations of choose corresponding to the open sub-
problems.

Operation Size Calls Proof sec.
List.Insert 3 0

√
0.6

List.Delete 19 1
√

1.8
List.Union 12 1

√
2.1

List.Diff 12 2
√

7.6
List.Split 27 1

√
9.3

SortedList.Insert 34 1 9.9
SortedList.InsertAlways 36 1

√
7.2

SortedList.Delete 23 1
√

4.1
SortedList.Union 19 2

√
4.5

SortedList.Diff 13 2
√

4.0
SortedList.InsertionSort 10 2

√
4.2

SortedList.MergeSort 17 4
√

14.3
StrictSortedList.Insert 34 1

√
14.1

StrictSortedList.Delete 21 1 15.1
StrictSortedList.Union 19 2

√
3

UnaryNumerals.Add 11 1
√

1.3
UnaryNumerals.Distinct 12 0

√
1.1

UnaryNumerals.Mult 12 1
√

2.7
BatchedQueue.Checkf 14 4

√
7.4

BatchedQueue.Snoc 7 2
√

3.7
AddressBook.Make 50 14 8.8
AddressBook.MakeHelpers 21 5 4.9
AddressBook.Merge 11 3 8.9

Figure 9. Automatically synthesized functions using our
system. We consider a problem as synthesized if the solu-
tion generated is correct after manual inspection. For each
generated function, the table lists the size of its syntax tree
and the number of function calls it contains.

√
indicates that

the system also found a proof that the generated program
matches the specification: in many cases proof and synthe-
sis are done simultaneously, but in rare cases merely a large
number of automatically generated inputs passed the speci-
fication. The final column shows the total time used for both
synthesis and verification.

Parallelization The formulation of our search over pro-
grams using AND/OR graphs with independent sub-problems
allows us to parallelize its exploration. We implemented the
parallel search in a system composed of several worker ac-
tors managed by a central coordinator. The share-nothing ap-
proach of the actor model is particularly adequate in our case
given the independence of sub-problems. For all non-trivial
benchmarks, the speed-up induced by concurrent workers
exceeds the setup and communication overheads.

8. Implementation and Results
We have implemented these techniques in Leon, a system
for verification and synthesis of functional program, thus
extending it from the state described in Section 3. Our im-
plementation and the online interface are available from
http://lara.epfl.ch/w/leon/.

http://lara.epfl.ch/w/leon/


As the front end to Leon, we use the first few phases
of the reference Scala compiler (for Scala 2.10). The Scala
compiler performs parsing, type checking, and tasks such
as the expansion of implicit conversions, from which Leon
directly benefits. We then filter out programs that use Scala
features not supported in Leon, and convert the syntax trees
to Leon’s internal representation. Leon programs can also
execute as valid Scala programs.

We have developed several interfaces for Leon. Leon
can be invoked as a batch command-line tool that accepts
verification and synthesis tasks and outputs the results of the
requested tasks. If desired, there is also a console mode that
allows applying synthesis rules in a step-by-step fashion and
is useful for debugging purposes.

To facilitate interactive experiments and the use of the
system in teaching, we have also developed an interface that
executes in the web browser, using the Play framework of
Scala as well as JavaScript editors. Our browser-based in-
terface supports continuous compilation of Scala code, al-
lows verifying individual functions with a single keystroke
or click, as well as synthesizing any given choose expres-
sion. In cases when the synthesis process is interrupted, the
synthesizer can generate a partial solution that contains a
program with further occurrences of the choose statement.

In order to evaluate our system, we developed bench-
marks with reusable abstraction functions. The example sec-
tion already pointed out to some of the results we obtained.
We next summarize further results and discuss some of the
remaining benchmarks. The synthesis problem descriptions
are available in the appendix, along with their solution as
computed by Leon.

Our set of benchmarks displayed in Figure 9 covers the
synthesis of various operations over custom data structures
with invariants, specified through the lens of abstraction
functions. These benchmarks use specifications that are both
easy to understand and shorter than resulting programs (ex-
cept in trivial cases). Most importantly, the specification
functions are easily reused across synthesis problems. We
believe these are key factors in the evaluation of any synthe-
sis procedure.

Figure 9 shows the list of functions we successfully syn-
thesized. In addition to the address book and sorted list ex-
amples shown in Section 2, our benchmarks include opera-
tions on unary numerals, defined as is standard as “zero or
successor”, and on an amortized queue implemented with
two lists from a standard book on functional data structure
implementation [34]. Each synthesized program has been
manually validated to be a solution that a programmer might
expect. Synthesis is performed in order, meaning that an op-
eration will be able to reuse all previously synthesized ones,
thus mimicking the usual development process. For instance,
multiplication on unary numerals is synthesized as repeated
invocations of additions.

Our system typically also proves automatically that the
resulting program matches the specification for all inputs. In
some cases, the lack of inductive invariants prevents fully-
automated proof of the synthesize code (we stop verification
after a timeout of 3 seconds). In most cases the synthesis
succeeds sufficiently fast for a reasonable interactive expe-
rience. Among the largest benchmarks is synthesis of cre-
ation of the address book (AddressBook.make), which auto-
matically derives a function to classify a list into two sub-
lists that are inserted into the appropriate fields of an address
book. This example is at the frontier of what is possible to-
day; our system can synthesize it but would need additional
inductive strengthening of the specification to verify it. In
such cases, it is possible that the returned solution is incor-
rect for the inputs that our verifier and counterexample finder
did not consider within a given time limit. On the one hand,
this shows a limitation when requiring fully verified solu-
tions. On the other hand, it shows the importance of veri-
fication, and points to another possible use of our system:
it can automatically synthesize buggy benchmarks for soft-
ware testing and verification tools, benchmarks that are close
to being correct yet for which it is difficult to automatically
find test inputs that witness the buggy behavior.

9. Related Work
Our approach is similar in the spirit to deductive synthesis
[29, 30, 39], which incorporates transformation of specifi-
cations, inductive reasoning, recursion schemes and termi-
nation checking, but we extend it with modern SMT tech-
niques, new search algorithms, and a new cost-based syn-
thesis framework. The type-driven counterexample-guided
synthesis with condition abduction (Section 6) directly uses
the complete completion technique [12] including the suc-
cinct representation of types. However, our use adds sev-
eral crucial dimensions to the basic functionality of gener-
ating well-typed terms: we add mechanisms to ensure that
the terms make sense semantically and not only in terms of
types, though the use of a verifier and automatically gen-
erated counterexamples. Moreover, this is only our starting
point and the main novelty is the addition of the inference of
conditional recursive programs. We currently do not use the
full power of [12] because we make no use of 1) ranking of
solutions based on the occurrence of symbols in the corpus
nor 2) the ability of [12] to generate first-class functions (the
functions we try synthesize here are first-order).

The origins of our deductive framework is in complete
functional synthesis, which was used previously for inte-
ger linear arithmetic [24]. In this paper we do not use
synthesis rules for linear integer arithmetic. Instead, we
here use synthesis procedure rules for algebraic data types
[15, 46], which were not reported in an implemented sys-
tem before. This gives us building blocks for synthesis of
recursion-free code. To synthesize recursive code we devel-
oped new algorithms, which build on and further advance



the counterexample-guided approach to synthesis [40], but
applying it to the context of an SMT instead of SAT solver,
and using new approaches to control the search space.

Deductive synthesis frameworks. Early work on synthesis
[29, 30] focused on synthesis using expressive and undecid-
able logics, such as first-order logic and logic containing the
induction principle.

Programming by refinement has been popularized as a
manual activity [3, 53]. Interactive tools have been devel-
oped to support such techniques in HOL [6]. A recent exam-
ple of deductive synthesis and refinement is the Specware
system from Kesterel [39]. We were not able to use the sys-
tem first-hand due to its availability policy, but it appears to
favor expressive power and control, whereas we favor au-
tomation.

A combination of automated and interactive development
is analogous to the use of automation in interactive theorem
provers, such as Isabelle [33]. However, whereas in verifica-
tion it is typically the case that the program is available, the
emphasis here is on constructing the program itself, starting
from specifications.

Work on synthesis from specifications [44] resolves some
of these difficulties by decoupling the problem of inferring
program control structure and the problem of synthesizing
the computation along the control edges. The work lever-
ages verification techniques that use both approximation and
lattice theoretic search along with decision procedures, but
appears to require more detailed information about the struc-
ture of the expected solution than our approach.

Synthesis with input/output examples. One of the first
works that addressed synthesis with examples and put induc-
tive synthesis on a firm theoretical foundation is the one by
Summers [45]. Subsequent work presents extensions of the
classical approach to induction of functional Lisp-programs
[13, 20]. These extensions include synthesizing a set of
equations (instead of just one), multiple recursive calls and
systematic introduction of parameters. Our current system
lifts several restrictions of previous approaches by support-
ing reasoning about arbitrary datatypes, supporting multiple
parameters in concrete and symbolic I/O examples, and al-
lowing nested recursive calls and user-defined declarations.

Inductive (logic) programming that explores automatic
synthesis of (usually recursive) programs from incomplete
specifications, most often being input/output examples [9,
32], influenced our work. Recent work in the area of pro-
gramming by demonstration has shown that synthesis from
examples can be effective in a variety of domains, such as
spreadsheets [38]. Advances in the field of SAT and SMT
solvers inspired counter-example guided iterative synthe-
sis [11, 40], which can derive input and output examples
from specifications. Our tool uses and advances these tech-
niques through two new counterexample-guided synthesis
approaches.

ESCHER, recently presented inductive synthesis algo-
rithm that is completely driven by input/output examples and
focuses on synthesis of recursive procedures, shares some
similarities with some of our rules [1]. By following the goal
graph, which is similar in function as the AND/OR search
tree, ESCHER tries to detect if two programs can be joined
by a conditional. The split goal rule in ESCHER can specu-
latively split goals and is thus similar to our splitting rules.
One of the differences is that ESCHER can split goals based
on arbitrary choices of satisfied input/output example pairs,
while our rules impose strictly predefined conditions that
correspond to common branching found in programs. We
found it difficult to compare the two frameworks because
ESCHER needs to query the oracle (the user) for input/out-
put examples each time a recursive call is encountered (in
the SATURATE rule). We do not consider it practical to al-
low the synthesizer to perform such extensive querying, be-
cause the number of recursive calls during synthesis tends to
be very large. Thus, ESCHER appears more suitable for sce-
narios such as reverse-engineering a black-box implementa-
tion from its observable behavior than for synthesis based on
user’s specification.

Our approach complements the use of SMT solvers with
additional techniques for automatic generation of input/out-
put examples. Our current approach is domain-agnostic al-
though in principle related to techniques such as Korat [5]
and UDITA [10].

Synthesis based on finitization techniques. Program
sketching has demonstrated the practicality of program syn-
thesis by focusing its use on particular domains [40–42].
The algorithms employed in sketching are typically focused
on appropriately guided search over the syntax tree of the
synthesized program. The tool we presented shows one way
to move the ideas of sketching towards infinite domains. In
this generalization we leverage reasoning about equations as
much as SAT techniques.

Reactive synthesis. Synthesis of reactive systems gener-
ates programs that run forever and interact with the envi-
ronment. Known complete algorithms for reactive synthe-
sis work with finite-state systems [37] or timed systems [2].
Finite-state synthesis techniques have applications to control
the behavior of hardware and embedded systems or concur-
rent programs [50]. These techniques usually take specifi-
cations in a fragment of temporal logic [36] and have re-
sulted in tools that can synthesize useful hardware compo-
nents [17]. Recently such synthesis techniques have been ex-
tended to repair that preserves good behaviors [51], which is
related to our notion of partial programs that have remaining
choose statements. These techniques have been applied to
the component-based synthesis problem for finite-state com-
ponents [28]; we focus on infinite domains, but for simpler,
input/output computation model.

TRANSIT combines synthesis and model checking to
bring a new model for programming distributed protocols



[49], which is a challenging case of a reactive system. Spec-
ification of a protocol is given with a finite-state-machine
description augmented with snippets that can use concrete
and symbolic values to capture intended behavior. Similarly
to our STE rule, the main computational problem solving
in TRANSIT is based on the counter-example guided induc-
tive synthesis (CEGIS) approach while the execution of con-
crete specification is used to prune the parts of the synthesis
search space. Although similarity exists between the concept
of progressive synthesis of guarded transitions in TRANSIT
and inferring branches in our case splitting and condition
abduction rules, the crucial difference is that our framework
infers the entire implementation, including the control flow
(with recursive calls), without the need of approximate con-
trol flow specification. On the other hand, the effectiveness
of TRANSIT is increased by focusing on a particular appli-
cation domain, which is the direction we will leave for the
future.

Automated inference of program fixes and contracts.
These areas share the common goal of inferring code and
rely on specialized software synthesis techniques [35, 52].
Inferred software fixes and contracts are usually snippets of
code that are synthesized according to the information gath-
ered about the analyzed program. The core of these tech-
niques lies in the characterization of runtime behavior that
is used to guide the generation of fixes and contracts. Such
characterization is done by analyzing program state across
the execution of tests; state can be defined using user-defined
query operations [52], and additional expressions extracted
from the code [35]. Generation of program fixes and con-
tracts is done using heuristically guided injection of (se-
quences of) routine calls into predefined code templates.

Our synthesis approach works with purely functional pro-
grams and does not depend on characterization of program
behavior. It is more general in the sense that it focuses on
synthesizing whole correct functions from scratch and does
not depend on already existing code. Moreover, rather than
using execution of tests to define starting points for synthe-
sis and SMT solvers just to guide the search, our approach
utilizes SMT solvers to guarantee correctness of generated
programs and uses execution of tests to speedup the search.
Coupling of flexible program generators and the Leon ver-
ifier provides more expressive power of the synthesis than
filling of predefined code schemas. Our approach does not
find errors and infer contracts, but can be utilized for those
tasks if the appropriate reformulation of the synthesis prob-
lem is made - desired code needs to be in the place of a priori
located errors or inside contracts.

10. Conclusions and Analysis
Software synthesis is a difficult problem but we believe
it can provide substantial help in software development.
We have presented a new framework for synthesis that
combines transformational and counterexample-guided ap-

proaches. Our implemented system can synthesize and prove
correct functional programs that manipulate unbounded data
structures such as algebraic data types. We have used the
system to synthesize algorithms that manipulate list and tree
structures. Our approach leverages the state of the art SMT
solving technology and an effective mechanism for solving
certain classes of recursive functions. Thanks to this tech-
nology, we were already able to synthesize programs over
unbounded domains that are guaranteed to be correct for all
inputs. Our automated system can be combined with man-
ual transformations or run-time constraint solving [25] to
cover the cases where static synthesis does not fully solve
the problem. It can further be improved by adding additional
rules for manually verified refactoring and automatic syn-
thesis steps [24], by informing the search using statistical
information from a corpus of code [12] and using domain-
specific higher-order combinators [43], as well as by further
improvements in decision procedures to enhance the class of
verifiable programs.
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[43] A. Spielmann, A. Nötzli, C. Koch, V. Kuncak, and
Y. Klonatos. Automatic synthesis of out-of-core algorithms.
In SIGMOD, 2013.

[44] S. Srivastava, S. Gulwani, and J. S. Foster. From program
verification to program synthesis. In POPL, pages 313–326,
2010.

[45] P. D. Summers. A methodology for LISP program construc-
tion from examples. JACM, 24(1):161–175, 1977.

[46] P. Suter. Programming with Specifications. PhD thesis, EPFL,
December 2012.

[47] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for
algebraic data types with abstractions. In POPL, pages 199–
210, 2010.
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A. Benchmark Problems and Solutions
We report the key parts of the input source code and the
synthesis result for several benchmarks shown in Section 8.

A.1 SortedList
Definitions.

sealed abstract class List
case class Cons(head : Int, tail : List) extends List
case object Nil extends List
def size(l : List) : Int = . . .
def content(l : List) : Set[Int] = . . .

def isSorted(list : List) : Boolean = list match {
case Nil ⇒ true
case Cons( , Nil) ⇒ true
case Cons(x1, Cons(x2, )) if(x1 > x2) ⇒ false
case Cons( , xs) ⇒ isSorted(xs) }

def insert(in1 : List, v : Int) = {
require(isSorted(in1))
choose { (out : List) ⇒ isSorted(out) &&

(content(out) == content(in1) ++ Set(v)) }}

def delete(in1 : List, v : Int) = {
require(isSorted(in1))
choose { (out : List) ⇒ isSorted(out) &&

(content(out) == content(in1) -- Set(v)) }}

def merge(in1 : List, in2 : List) = {
require(isSorted(in1) && isSorted(in2))
choose { (out : List) ⇒ isSorted(out) &&

(content(out) == content(in1) ++ content(in2)) }}

def diff(in1 : List, in2 : List) = {
require(isSorted(in1) && isSorted(in2))
choose { (out : List) ⇒ isSorted(out) &&

(content(out) == content(in1) -- content(in2)) }}

def split(list : List) : (List,List) = {
choose { (res : (List,List)) ⇒
val s1 = size(res. 1)
val s2 = size(res. 2)
abs(s1 − s2) ≤ 1 && s1 + s2 == size(list) &&

content(res. 1) ++ content(res. 2) == content(list) }}

def sort(list : List) : List = choose {
(res : List) ⇒ isSorted(res) &&

content(res) == content(list) }

Synthesized solutions.

def insert(in1 : List, v : Int) = {
require(isSorted(in1))
in1 match {
case Nil ⇒ Cons(v, Nil)
case Cons(h, t) ⇒ if (v < h) {

Cons(v, in1)
} else {

Cons(h, insert(t, v)) }}}

def delete(in1 : List, v : Int) : List = {
require(isSorted(in1))
in1 match {
case Nil ⇒ Nil
case Cons(h, t) ⇒ if (v == h) {

delete(t, v)
} else {

Cons(h, delete(t, v)) }}}

def merge(in1 : List, in2 : List) : List = {
require(isSorted(in1) && isSorted(in2))
in1 match {
case Nil ⇒ Nil
case Cons(h, t) ⇒ merge(t, insert(in2, h)) }}

def diff(in1 : List, in2 : List) : List = {
require(isSorted(in1) && isSorted(in2))
in2 match {
case Nil ⇒ in1
case Cons(h, t) ⇒ diff(delete(in1, h), t) }}

def split(in : List) : (List,List) = in match {
case Nil ⇒ (Nil, Nil)
case Cons(h, Nil) ⇒ (in, Nil)
case Cons(h1, Cons(h2, t2)) ⇒
val (s1, s2) = split(t2)
(Cons(h1, s1), Cons(h2, s2)) }

def sort(lst : List) : List = lst match {
case Nil ⇒ lst
case Cons( , Nil) ⇒ lst
case ⇒ {
val p = split(list)
merge(sort(p.fst), sort(p.snd)) }}

A.2 UnaryNumerals
Definitions.

sealed abstract class Num
case object Z extends Num
case class S(pred : Num) extends Num
def value(n :Num) : Int = (n match {
case Z ⇒ 0
case S(p) ⇒ 1 + value(p)
}) ensuring ( ≥ 0)

def add(x : Num, y : Num) : Num = {
choose { (r : Num) ⇒

value(r) == value(x) + value(y) }}

def mult(x : Num, y : Num) : Num = {
choose { (r : Num) ⇒

value(r) == value(x) ∗ value(y) }}

def distinct(x : Num, y : Num) : Num = {
choose { (r : Num) ⇒

value(r) != value(x) &&

value(r) != value(y) }}



Synthesized solutions.

def add(x : Num, y : Num) : Num = x match {
case Z ⇒ y
case S(p) ⇒ add(p, S(y)) }

def mult(x : Num, y : Num) : Num = y match {
case Z ⇒ Z
case S(p) ⇒ add(x, mult(x, y−1)) }

def distinct(x : Num, y : Num) : Num = x match {
case Z ⇒ S(y)
case S(p) ⇒ y match {
case Z ⇒ S(x)
case S(p) ⇒ Z }}

A.3 BatchedQueue
Definitions.

sealed abstract class List
case class Cons(head : Int, tail : List) extends List
case object Nil extends List
def content(l : List) : Set[Int] = . . .

case class Queue(f : List, r : List)
def content(p : Queue) : Set[Int] =

content(p.f) ++ content(p.r)
def isEmpty(p : Queue) : Boolean = p.f == Nil

def revAppend(aList : List, bList : List) : List =
aList match {
case Nil ⇒ bList
case Cons(x, xs) ⇒

revAppend(xs, Cons(x, bList))
} ensuring (res ⇒

content( ) == content(aList) ++ content(bList))

def invariantList(q : Queue, f : List, r : List) = {
revAppend(q.f, q.r) == revAppend(f, r) &&

q.f != Nil || q.r == Nil }

def reverse(list : List) = revAppend(list, Nil)
ensuring (content( ) == content(list))

def checkf(f : List, r : List) : Queue =
choose { (res : Queue) ⇒

invariantList(res, f, r) }

def tail(p : Queue) : Queue = p.f match {
case Nil ⇒ p
case Cons( , xs) ⇒ checkf(xs, p.r) }

def snoc(p : Queue, x : Int) : Queue = {
choose { (res : Queue) ⇒

content(res) == content(p) ++ Set(x) &&

(isEmpty(p) || content(tail(res)) ++

Set(x) == content(tail(res))) } }

Synthesized solutions.

def checkf(f : List, r : List) : Queue = r match {

case r @ Nil ⇒ Queue(f, r)
case ⇒ f match {
case f @ Cons( , ) = Queue(f, r)
case ⇒ Queue(reverse(r), Nil) }}

def snoc(p : Queue, x : Int) : Queue =
Queue(p.f, Cons(x, p.r))

A.4 AddressBooks
Definitions. (Section 2.2 shows solutions)

case class Info(address : Int, zipcode : Int,
phoneNumber : Int)

case class Address(info : Info, priv : Boolean)

sealed abstract class List
case class Cons(a : Address, tail :List) extends List
case object Nil extends List
def content(l : List) : Set[Address] = . . .
def size(l : List) : Int = . . .

def allPrivate(l : List) : Boolean = l match {
case Nil ⇒ true
case Cons(a, l1) ⇒
if (a.priv) allPrivate(l1)
else false }

def allBusiness(l : List) : Boolean = l match {
case Nil ⇒ true
case Cons(a, l1) ⇒
if (a.priv) false
else allBusiness(l1) }

case class AddressBook(business : List, pers : List)
def size(ab : AddressBook) : Int =

size(ab.business) + size(ab.pers)
def isEmpty(ab : AddressBook) = size(ab) == 0
def content(ab : AddressBook) : Set[Address] =

content(ab.pers) ++ content(ab.business)

def invariant(ab : AddressBook) =
allPrivate(ab.pers) && allBusiness(ab.business)

def makeAddressBook(l : List) : AddressBook =
choose { (res : AddressBook) ⇒

size(res) == size(l) &&

invariant(res) }

def merge(l1 : List, l2 : List) : List = l1 match {
case Nil ⇒ l2
case Cons(a, tail) ⇒ Cons(a, merge(tail, l2)) }

def mergeAddressBooks(
ab1 : AddressBook, ab2 : AddressBook) = {
require(invariant(ab1) && invariant(ab2))
choose { (res : AddressBook) ⇒

(size(res) == size(ab1) + size(ab2)) &&

invariant(res) }}
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