
Phantm: PHP Analyzer for Type Mismatch

Etienne Kneuss Philippe Suter Viktor Kuncak
School of Computer and Communication Sciences, Swiss Federal Institute of Technology (EPFL)

firstname.lastname@epfl.ch

ABSTRACT
We present Phantm, a static analyzer that uses a flow-
sensitive analysis to detect type errors in PHP applications.
Phantm can infer types for nested arrays, and can lever-
age runtime information and procedure summaries for more
precise results. Phantm found over 200 true problems when
applied to three applications with over 50’000 lines of code,
including the popular DokuWiki code base.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification; F.3.1 [Logics
and Meaning of Programs]: Specifying and Verifying and
Reasoning about Programs

General Terms: Languages, Reliability, Verification

1. INTRODUCTION
PHP is a very popular scripting language. PHP scripts

are behind many web sites, including wikis, content manage-
ment systems, and social networking web sites. It is notably
used by major web actors, such as Wikipedia, Facebook or
Yahoo. Unfortunately, it is easy to write PHP scripts that
contain errors. Among the PHP features that are contribut-
ing to this fact is the lack of any static system for detecting
type or initialization errors.

This paper presents Phantm,1 a static analyzer for PHP 5
based on data-flow analysis. Phantm is an open-source tool
written in Scala and available from http://lara.epfl.ch/

dokuwiki/phantm. It contains a robust parser that passes
10’000 tests from the PHP test suite and a static analysis
algorithm for type errors. Phantm uses an abstract inter-
pretation domain that approximates values of variables for
both simple and structured types, such as arrays and ob-
jects. Phantm is flow-sensitive, which is natural given that
the same PHP variable can have different types at different
program points.

Phantm supports a large number of PHP constructs in
their most common usage scenarios, with the goal of maxi-
mizing the usefulness of the tool. It incorporates precision-
enhancing support for several PHP idioms that we fre-
quently encountered and for which our initial approach was
not sufficiently precise.

Phantm analyzes each function separately by default, but
uses PHP documentation features to allow users to declare

1PHp ANalyzer for Type Mismatch

Copyright is held by the author/owner(s).
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
ACM 978-1-60558-791-2/10/11.

types of function arguments. It also comes with detailed
type prototype information for a large number of library
functions. We have found Phantm very helpful in anno-
tating existing code bases. Phantm also includes a sim-
ple version of inter-procedural analysis. Through additional
flexibility that goes beyond simple types, Phantm supports
many current programming styles while preventing question-
able practices. We therefore hope that it can influence the
future evolution of the language, leading to more reliable
applications.

2. RESULTS
Phantm has been applied to two substantial PHP appli-

cations and one library, with a total of over 50’000 lines of
PHP code, including a webmail client used by several thou-
sand users, the popular DokuWiki software2 and the Sim-
plePie news aggregator library.3 Phantm identified over 200
problems in the code and its documentation. Some of these
problems can cause exploits, infinite loops, and crashes. The
total analysis time was 276 seconds, as the following table
shows.

Lines Warnings Problems Time
DokuWiki 31486 270 76 244s
WebMail 3621 59 43 11s
SimplePie 15003 327 84 21s
Total 50110 656 203 276 s

The Problems column includes bugs, dangerous implicit con-
versions, statements that issue notices in PHP, and errors in
annotations present in the original code. All problems were
confirmed by manual examination of the warnings. Note
that the analysis time depends more on the code structure
than on its size expressed in terms of lines of code.

3. EXAMPLE
We illustrate some of the challenges in type analysis of

PHP and show how Phantm tackles them. Consider the
following code, inspired by code bases we have encountered:

$conf[”readmode”] = ”r”;
$conf[”file”] = fopen($inputFile, $conf[”readmode”]);
$content = fread($conf[”file”]);
fclose($conf[”file”]);

Note that several values of different type are stored in an
array. To check that the call to the library function fopen is
correctly typed, we need to establish that the value stored

2http://www.dokuwiki.org
3http://simplepie.org/

373

http://people.epfl.ch/etienne.kneuss
http://lara.epfl.ch/~psuter/
http://lara.epfl.ch/~kuncak
http://lara.epfl.ch/dokuwiki/phantm
http://lara.epfl.ch/dokuwiki/phantm
http://www.dokuwiki.org
http://simplepie.org/

in $conf[”readmode”] is a string. Our analysis thus cannot
simply abstract the value of $conf as “any array”, as the
mapping between the keys and the types of the value needs
to be stored. On this code, Phantm correctly concludes that
the entry for the key ”readmode” always points to a string.

The function fopen tries to open a file in a desired mode
and returns a pointer to the file (called resource in PHP) if
it succeeded, and the value false otherwise. To handle such
code, Phantm computes the result type of the call as “any
resource or false”. Because fread expects a resource only,
Phantm displays the following warning:
Type mismatch. Expected: Array[file => Resource, ...],

found: Array[file => Resource or False, ...]

This warning points to the fact that the code does not prop-
erly handle the case when the file cannot be opened. Al-
though fclose likewise expects only a resource, Phantm does
not emit a second warning for the fourth line. This is be-
cause, when it detects a type mismatch, Phantm applies
type refinement on the problematic variable, assuming that
the intended type does not go beyond the one expected type.
This often eliminates or greatly reduces the number of warn-
ings for the same variable.

Having realized the error thanks to Phantm’s output, we
can now change the code to properly handle failures to open
the file, as follows:

$conf[”readmode”] = ”r”;
$conf[”file”] = fopen($inputFile, $conf[”readmode”]);
if($conf[”file”]) {

$content = fread($conf[”file”]);
fclose($conf[”file”]); }

Now that the calls to fread and fclose are guarded by a
check on $conf[”file”], Phantm determines that their argu-
ment will never evaluate to false and accepts the program
as type correct. Phantm thus takes into account the order
of statements and the meaning of conditions.

4. FEATURES
Data-flow analysis lattice. Phantm abstracts most
scalar types by a single value, with booleans being the ex-
ception. String and integer constants are abstracted by their
precise value when they serve as keys in a map. For exam-
ple, to denote all maps where the key "x" is mapped to an
integer and all other keys are undefined Phantm uses the
abstract value Map][”x” 7→ Int],? 7→ Undef]]. Phantm uses
allocation-site abstraction to model dynamically allocated
objects.

Using null as a value often has a meaning, while reading
from unassigned variables is generally an error. To distin-
guish between these two scenarios, Phantm uses two dif-
ferent abstract values for these two uses and handles them
differently in the transfer function. Phantm thus incorpo-
rates a limited amount of history-sensitive semantics.

Phantm approximates the set of types that a variable can
have at a given program point. To do so, it considers as the
abstract domain not only the values representing a specific
type (such as Int]), but also union types. For structured
union types Phantm applies a form of independent attribute
approximation, replacing a union of map types with a map
whose entries have union types.

Built-in Support for Important APIs and Documen-
tation. PHP comes with a large library of functions and
classes. The main extensions shipped with PHP contain

more than 2’500 functions and classes. Phantm can cor-
rectly represent this internal API, which is a key factor to
obtain useful analysis results. This API is stored in an exter-
nal XML file, allowing easy modifications. Based on multi-
ple call-sites of the user-defined functions, Phantm can also
generate a corresponding API in XML format. This file can
then easily be refined by hand, and imported for subsequent
analyses to obtain more precise results.

Interprocedural analysis. Instead of defining multiple
functions with different names based on the types they ac-
cept, PHP functions usually allow many types as input and
then dispatch based on them. This causes problems for the
source annotations, as they do not allow multiple disjoint
prototypes. To solve this issue it is possible to use Phantm’s
XML API which allows multiple prototypes. A more auto-
mated alternative is to request an interprocedural analysis
that reanalyzes functions for each type context. Phantm
can automatically perform context-sensitive analysis of se-
lected functions.

Runtime instrumentation. Phantm includes a PHP
library to instrument the analyzed application. When using
this library, the developer uses a function call to indicate a
milestone in the code, then runs the application using the
standard PHP interpreter. Upon reaching the milestone,
the library saves in a file a snapshot of all included source
files, as well as the values of global and local values at the
milestone. It then terminates the execution. The developer
can then run Phantm using this saved state information
as an alternative starting point for static analysis, which
often produces a higher-quality output. More details and
evaluation results related to this feature, as well as more
information on Phantm in general, can be found in [2].

5. RELATED
Existing work on static analysis of PHP primarily focused

on specific security vulnerabilities. Pixy [1] is a static analy-
sis tool checking for security vulnerabilities such as cross site
scripting (XSS) or SQL injections, which remain the main
attack vectors of PHP applications. Wassermann and Su [3]
present work on statically detecting SQL injections.

It is only recently that some work considered static anal-
ysis of types in PHP applications. Notably, the Facebook
HipHop project4 is relying on a certain amount of type anal-
ysis to optimize the PHP runtime. The recently released tool
PHPLint5 aims to detect bugs through type errors. Even
if its goal is close to the present work, our tool has a much
more precise abstract domain, and therefore reports many
fewer spurious warnings.

6. REFERENCES
[1] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.

Pixy: A static analysis tool for detecting web application
vulnerabilities. In IEEE Symp. Security and Privacy, 2006.

[2] Etienne Kneuss, Philippe Suter, and Viktor Kuncak.
Runtime instrumentation for precise flow-sensitive type
analysis. In 1st International Conference on Runtime
Verification (RV’10), 2010.

[3] Gary Wassermann and Zhendong Su. Sound and precise
analysis of web applications for injection vulnerabilities. In
PLDI, 2007.

4http://github.com/facebook/hiphop-php/
5http://www.icosaedro.it/phplint/

374

http://github.com/facebook/hiphop-php/
http://www.icosaedro.it/phplint/

	Introduction
	Results
	Example
	Features
	Related
	References

