
Executing Specifications using
Synthesis and Constraint Solving

Viktor Kuncak?1, Etienne Kneuss1, and Philippe Suter1,2

1 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

{firstname.lastname}@epfl.ch, psuter@us.ibm.com

Abstract. Specifications are key to improving software reliability as
well as documenting precisely the intended behavior of software. Writing
specifications is still perceived as expensive. Of course, writing imple-
mentations is at least as expensive, but is hardly questioned because
there is currently no real alternative. Our goal is to give specifications
a more balanced role compared to implementations, enabling the devel-
opers to compile, execute, optimize, and verify against each other mixed
code fragments containing both specifications and implementations. To
make specification constructs executable we combine deductive synthe-
sis with run-time constraint solving, in both cases leveraging modern
SMT solvers. Our tool decomposes specifications into simpler fragments
using a cost-driven deductive synthesis framework. It compiles as many
fragments as possible into conventional functional code; it executes the
remaining fragments by invoking our constraint solver that extends an
SMT solver to handle recursive functions. Using this approach we were
able to execute constraints that describe the desired properties of inte-
gers, sets, maps and algebraic data types.

1 Introduction

Specifications are currently second class citizens in software development. An
implementation is obligatory; specification is optional. Our goal is to assign to
specifications a more balanced role compared to implementations. For this to
happen, we aim to allow developers to execute specifications, even if such exe-
cution is slower or less predictable than execution of imperative and functional
code. We wish to permit developers to write mixed code fragments containing
both specifications and implementations. They should be able to compile, exe-
cute, optimize, and verify such fragments against each other.

By execution of specifications we mean not only testing whether a constraint
is true for known values of variables (as when checking e.g. assertions), but
also computing a missing value so that the given constraint is satisfied. Such
constraint solving functionality can also be thought as one way of automating

? This work is supported in part by the European Research Council (ERC) Project
Implicit Programming

2 Kuncak, Kneuss, Suter

the remedial action in case of assertion violation [57]. However, we believe that
such constructs should not be treated as a sort of exception mechanism, but as
one of the main ways of describing the desired common behavior.

This paper presents our experience in developing techniques to make such
constraint solving executable. Our current approach combines deductive syn-
thesis with run-time constraint solving, in both cases leveraging modern SMT
solvers. We have built a tool as part of the Leon verification system [9] that
incorporates both techniques and allows us to experiment with their trade-offs.
A version of the Leon platform is publicly available in source code form for fur-
ther experiments at http://lara.epfl.ch/w/leon. The tool decomposes spec-
ifications into simpler fragments using a cost-driven deductive synthesis frame-
work [32,37,40–42]. It compiles as many fragments as possible into conventional
functional code; it executes the remaining fragments by invoking a constraint
solver at runtime. The solver extends a conventional SMT solver with the ability
to handle recursive functions, in a manner similar to our previous systems [38,39].
Using this approach we were able to execute constraints that describe the desired
properties of integers, sets, maps and algebraic data types.

In general, the deductive synthesis framework allows us to recursively split
challenging problems into tractable subproblems and compile some of the sub-
problems into conventional code. If a subproblem remains too challenging for
synthesis, we keep its declarative specification and execute it using run-time
constraint solving. It turns out that in certain interesting cases, the resulting
partial program is well-defined for simple, frequent paths and only relies on
run-time constraint solving for complex cases.

In the rest of this paper we outline our approach, including the functional
language setup, the run-time constraint solving approach, and synthesis tech-
niques. We then illustrate our initial experience with combining run-time con-
straint solving and synthesis, hinting at some future directions. We finish with
a (necessary biased) survey of related work.

2 Examples

We illustrate the benefits of enabling declarative specifications through a series
of examples. We show how these examples can be effectively handled by our
system. We start by defining a List data-structure with an abstraction function
content from list to a set, and an invariant predicate isSorted.

abstract class List
case class Cons(head: Int, tail: List) extends List
case object Nil extends List

def content(l: List): Set[Int] = l match {
case Cons(h, t) ⇒ Set(h) ++ content(t)
case Nil ⇒ Set()
}

Executing Specifications using Synthesis and Constraint Solving 3

def isSorted(l: List): Boolean = l match {
case Cons(h1, t1 @ Cons(h2, t2)) ⇒ (h1 ≤ h2) && isSorted(t1)
case ⇒ true
}

Thanks to the abstraction function and the invariant, we can concisely specify
an insert operation for sorted lists using a constraint:

def insert(l: List, v: Int) = {
require(isSorted(l))
choose{ (x: List) ⇒ isSorted(x) && (content(x) == content(l) ++ Set(v)) }
}

Our deductive synthesis procedure is able to translate this constraint into the
following complete implementation in under 9 seconds:

def insert(l: List, v: Int) = {
require(isSorted(l))
l match {
case Cons(head, tail) ⇒
if (v == head) {

l
} elseif (v < head) {

Cons(v, l)
} else {

insert(t, v)
}

case Nil ⇒
Cons(v, Nil)

}
}

However, as the complexity of the constraints increases, the deductive procedure
may run short of available time to translate a constraint into complete efficient
implementations. As an example, we can currently observe this limitation of
our system for a red-black tree benchmark. The following method describes the
insertion into a red-black tree.3

def insert(t: Tree, v: Int) = {
require(isRedBlack(t))
choose{ (x: Tree) ⇒ isRedBlack(x) && (content(x) == content(t) ++ Set(v)) }
}

Instead of using synthesis (for which this example may present a challenge), we
can rely on the run-time constraint solving to execute the constraint. In such
scenario, the run-time waits until the argument t and the value v are known,
and finds a new tree value x such that the constraint holds. Thanks to our
constraint solver, which has a support recursive functions and also leverages
the Z3 SMT solver, this approach works well for small red-black trees. It is

3 We omit here the definition of the tree invariant for brevity, which is rather complex
[15,52], but still rather natural to describe using recursive functions.

4 Kuncak, Kneuss, Suter

therefore extremely useful for prototyping and testing and we have previously
explored it as a stand-alone technique for constraint programming in Scala [39].
However, the complexity of reasoning symbolically about complex trees makes
this approach inadequate for large concrete inputs.

Fortunately, thanks to the nature of our deductive synthesis framework, we
can combine synthesis and run-time constraint solving. We illustrate this using
an example of a red-black tree with a cache. Such a tree contains a red-black tree,
but also redundantly stores one of its elements.

case class CTree(cache: Int, data: Tree)

The specification of the invariant inv formalizes the desired property: the cache
value must be contained in the tree unless the tree is empty.

def inv(ct: CTree) = {
isRedBlack(ct.data) &&

(ct.cache ∈ content(ct.data)) || (ct.data == Empty)
}

The contains operation tests membership in the tree.

def contains(ct: CTree, v: Int): Boolean = {
require(inv(ct))
choose{ (x: Boolean) ⇒ x == (v ∈ content(ct)) }
}

While not being able to fully translate it, the deductive synthesis procedure
decomposes the problem and partially synthesizes the constraint. One of its
possible results is the following partial implementation that combines actual
code and a sub-constraint:

def contains(ct: CTree, v: Int): Boolean = ct.data match {
case n: Node ⇒
if (ct.cache == v) {
true
} else {

choose { (x: Boolean) ⇒ x == (v ∈ content(n)) }
}

case Empty ⇒
false

}

We notice that this partial implementation makes use of the cache in accordance
with the invariant. The code accurately reflects the fact that the cache may not
be trusted if the tree is empty. The remaining constraint is in fact a simpler
problem that only relates to standard red-black trees. Our system can then
compile the resulting code, where the fast path is compiled as the usual Scala
code, and the choose construct is compiled using the run-time solving approach.
In the sequel we give details both for our run-time solving approach and the
compile-time deductive synthesis transformation framework. We then discuss
our very first experience with combining these two approaches.

Executing Specifications using Synthesis and Constraint Solving 5

3 Language

We next present a simple functional language that we use to explore the ability
to do verification as well as to execute and compile constraints.

3.1 Implementation Language

As the implementation language we consider a Turing-complete Scala fragment.
For the purpose of this paper we assume that programs consist of a set of side-
effect-free deterministic mutually recursive functions that manipulate countable
data types including integers, n-tuples, algebraic data types, finite sets, and
finite maps. We focus on functional code. Our implementation does support
localized imperative features; for more details see [9]. We assume that recursive
functions are terminating when their specified preconditions are met; our tool
applies several techniques to establish termination of recursive functions.

3.2 Function Contracts

Following Scala’s contract notation [51], we specify functions in the implemen-
tation language using preconditions (require) and postconditions (ensuring). The
declaration

def f(x:A) : B = {
body
} ensuring((res:B) ⇒ post(res))

indicates that the result computed by f should satisfy the specification post. Here
res⇒post(res) is a lambda expression in which res is a bound variable; the ensuring

operator binds res to the result of evaluating body. The expression post is itself
a general expression in the implementation language, and can invoke recursive
functions itself.

3.3 Key Concept: Constraints

Constraints are lambda expressions returning a Boolean value, precisely of the
kind used after ensuring clauses. To express that a constraint should be solved
for a given value, we introduce the construct choose. The expression

choose((res:B) ⇒ C(res))

should evaluate to a value of type B that satisfies the constraint C. For example,
an implicit way to indicate that we expect that the value y is even and to compute
y/2 is the following:

choose((res:Int) ⇒ res + res == y)

The above expression evaluates to y/2 whenever y is even. Note that C typically
contains, in addition to the variable res, variables denoting other values in scope
(in the above, example, the variable y). We call such variables parameters of the
constraint.

6 Kuncak, Kneuss, Suter

4 Solving Constraints at Run-Time

We next describe the baseline approach that we use to execute constraints at
run-time. This approach is general, as it works for essentially all computable
functions on countable domains. On the other hand, it can be inefficient. The
subsequent section will describe our synthesis techniques, which can replace such
general-purpose constraint solving in a number of cases of interest.

4.1 Model-Generating SMT Solver

The main work horse of our run-time approach is an SMT solver, concretely,
Z3 [16]. What is crucial for our application is that Z3 supports model generation:
it not only detects unsatisfiable formulas, but in case a formula has a model,
can compute and return one model. Other important aspects of Z3 are that it
has good performance, supports algebraic data types and arrays [17], supports
incremental solving, and has a good API, which we used to build a Scala layer
to conveniently access its functionality [38].

4.2 Fair Unfolding of Recursive Functions

Although SMT solvers are very expressive, they do not directly support recur-
sive functions. We therefore developed our own procedure for handling recursive
function definitions. Given a deterministic recursive functions f viewed as a re-
lation, assume that f is defined using the fixed point of a higher-order functional
H, which implies the formula D:

D ≡ ∀x. f(x) = H(x, f)

The constraints we solve have the form C ∧ Dk, where both C and Dk are
quantifier-free formulas that we map precisely into the language of an SMT
solver.

We use an algorithm for fair unfolding of recursive definitions [69] to reduce
the formula C∧D to a series of over-approximations and under-approximations.
From an execution point of view, such approximations describe all the executions
up to certain depth. From a logical perspective, unfolding is a particular form of
universal quantifier instantiation which generates a ground consequence Dk of
the definition D. If C∧Dk is unsatisfiable, so is C∧D. If C∧Dk is satisfiable for
the model x = a then we can simply check whether the executable expression
evaluates to true. In our implementation we have an additional option: we can
use the SMT solver itself, to check whether a model of C ∧Dk depends on the
values of partly interpreted functions denoted by f . To this extent, we instrument
the logical representation of unfolding up to a given depth using propositional
variables that can prevent the execution from depending on uninterpreted values
of functions. We call the value of these variables the control literals B.

Figure 1 shows the pseudo-code of the resulting algorithm for solving con-
straints involving recursive functions. It is defined in terms of two subroutines,

Executing Specifications using Synthesis and Constraint Solving 7

def solve(C, D) {
(C, D0, B0) = unrollStep(C, D, ∅, 0)
k = 0
while(true) {

decide(C ∧Dk ∧
∧

b∈Bk
b) match {

case ”SAT” ⇒ return ”SAT”
case ”UNSAT” ⇒ decide(C ∧Dk) match {
case ”UNSAT” ⇒ return ”UNSAT”
case ”SAT” ⇒ (C, Dk+1, Bk+1) = unrollStep(C, D, Bk, k) }}

k += 1
}
}

Fig. 1. Pseudo-code of the solving algorithm. The decision procedure for the base
theory is invoked through the calls to decide.

decide, which invokes the underlying SMT solver, and unrollStep. The fair nature
of the unrolling step guarantees that all uninterpreted function values present in
the formula are eventually unfolded, if needs be.

The formula without the control literals can be seen as an over-approximation
of the formula with the semantics of the program, in that it accepts all the
same models plus some models in which the interpretation of some invocations
is incorrect. The formula with the control literals is an under-approximation,
in the sense that it accepts only the models that do not rely on the guarded
invocations. This explains why the UNSAT answer can be trusted in the first
case and the SAT case in the latter.

This algorithm is the basis of the original Leon as a constraint solver and
verifier for functional programs [9, 68,69].

4.3 Executing Choose Construct at Run-Time

During the compilation of programs with choose constructs, we collect a symbolic
representation of the constraints used. The actual call to choose is then substi-
tuted with a call back to the Leon system indicating both which constraint it
refers to, but also propagating the run-time inputs.

During execution, these inputs are converted from concrete JVM objects back
to their Leon representations, and finally substituted within the constraint. By
construction, the resulting formula’s free variables are all output variables.

Given a model for this formula, we translate the Leon representation of out-
put values back to concrete objects which are then returned.

4.4 Evaluation

We evaluated the performance of the run-time constraint solving algorithm on
two data structures with invariants: sorted lists and red-black trees. For each

8 Kuncak, Kneuss, Suter

data structure, we implemented a declarative version of the add and remove
operations. Thanks to the abstraction and predicate functions, the specifications
of both operations are very concise and self-explanatory. We illustrate this by
providing the corresponding code for red-black trees:

def add(t: Tree, e: Int): Tree = choose {
(res: Tree) ⇒ content(res) == content(t) ++ Set(e) && isRedBlackTree(res)
}

def remove(t: Tree, e: Int): Tree = choose {
(res: Tree) ⇒ content(res) == content(t) -- Set(e) && isRedBlackTree(res)
}

Solving is relatively efficient for small data structures: it finds models in under
400ms for lists and trees up to size 4. However, the necessary solving time in-
creases exponentially with the size and goes as high as 35 seconds for synthesizing
insertion into a red-black tree of size 10.

5 Synthesizing Functional Code from Constraints

In this section, we give an overview of our framework for deductive synthesis.
The goal of the approach is to derive correct programs by successive steps. Each
step is validated independently, and the framework ensures that composing steps
results in global correctness.

5.1 Synthesis Problems and Solutions

A synthesis problem, or constraint, is fundamentally a relation between in-
puts and outputs. We represent this, together with contextual information, as a
quadruple

Jā 〈Π B φ〉 x̄K

where:

– ā denotes the set of input variables,
– x̄ denotes the set of output variables,
– φ is the synthesis predicate, and
– Π is the path condition to the synthesis problem.

The free variables of φ must be a subset of ā ∪ x̄. The path condition denotes
a property that holds for input at the program point where synthesis is to be
performed, and the free variables of Π should therefore be a subset of ā.

As an example, consider the following call to choose:

def f(a : Int) : Int = {
if(a ≥ 0) {

choose((x : Int) ⇒ x ≥ 0 && a + x ≤ 5)
} else . . .
}

Executing Specifications using Synthesis and Constraint Solving 9

The representation of the corresponding synthesis problem is:

Ja 〈a ≥ 0 B x ≥ 0 ∧ a+ x ≤ 5〉 xK (1)

We represent a solution to a synthesis problem as a pair 〈P |T̄ 〉 where:

– P is the precondition, and
– T̄ is the program term.

The free variables of both P and T̄ must range over ā. The intuition is that,
whenever the path condition and the precondition are satisfied, evaluating φ[x̄ 7→
T̄] should evaluate to> (true), i.e. T̄ are realizers for a solution to x̄ in φ given the
inputs ā. Furthermore, for a solution to be as general as possible, the precondition
must be as weak as possible.

Formally, for such a pair to be a solution to a synthesis problem, denoted as

Jā 〈Π B φ〉 x̄K ` 〈P |T̄ 〉

the following two properties must hold:

– Relation refinement: Π ∧ P |= φ[x̄ 7→ T̄]
This property states that whenever the path- and precondition hold, the
program T̄ can be used to generate values for the output variables x̄ such
that the predicate φ is satisfied.

– Domain preservation: Π ∧ (∃x̄ : φ) |= P
This property states that the precondition P cannot exclude inputs for which
an output exists.

As an example, a valid solution to the synthesis problem (1) is given by:
〈a ≤ 5|0〉. The precondition a ≤ 5 characterizes exactly the input values for
which a solution exists, and for all such values, the constant 0 is a valid solution
term for x. The solution is in general not unique; alternative solutions for this
particular problem include 〈a ≤ 5|5− a〉, or 〈a ≤ 5|if(a < 5) a+ 1 else 0〉.

5.2 Inference Rules

The correctness conditions described above characterize the validity of solutions
to synthesis problems. We now show how to derive such solutions. We present
our techniques as a set of inference rules. As a simple first example, consider the
following rule:

Jā 〈Π B φ[x0 7→ t]〉 x̄K ` 〈P |T̄ 〉 x0 /∈ vars(t)

Jā 〈Π B x0 = t ∧ φ〉 x0 , x̄K ` 〈P |val x̄ := T̄ ; (t , x̄)〉

As is usual with inference rules, on top are the premisses and below is the goal.
This particular rule captures the intuition that, whenever a term of the form
x0 = t appears as a top-level conjunct in a synthesis problem, the problem can
be simplified by assigning to the output variable x0 the term t. The rule specifies

10 Kuncak, Kneuss, Suter

both how the subproblem relates to the original one, and how its solution and
precondition are used in the final program.

Another example is the following rule for decomposing disjunctions:

Jā 〈Π B φ1〉 x̄K ` 〈P1|T̄1〉 Jā 〈Π ∧ ¬P1 B φ2〉 x̄K ` 〈P2|T̄2〉
Jā 〈Π B φ1 ∨ φ2〉 x̄K ` 〈P1 ∨ P2|if(P1) {T̄1} else {T̄2}〉

Here, the rule states that a disjunction can be handled by considering each
disjunct in isolation, and combining the solutions as an if-then-else expression,
where the branching condition is the precondition for the first problem. Note that
in the second subproblem, we have added the literal ¬P1 to the path condition.
This reflects the knowledge than, in the final program, the subprogram for the
second disjunct only executes if the first one cannot compute a solution.

In general, a synthesis problem is solved whenever a derivation can be found
for which all output variables are assigned to a program term.

For certain well-defined classes of synthesis problems, we can design sets
of inference rules which, together with a systematic application strategy, are
guaranteed to result in successful derivation. We have shown in previous work
such complete strategies for integer linear arithmetic, rational arithmetic, or term
algebras [32, 40, 67]. We call these synthesis procedures, analogously to decision
procedures.

As a final example, we now show how our framework can express solutions
that take the form of recursive functions traversing data structures. The next
rule captures one particular yet very common form of such a traversal for Lists.

(Π1 ∧ P) =⇒ Π2 Π2[a0 7→ Cons(h,t)] =⇒ Π2[a0 7→ t]
Jā 〈Π2 B φ[a0 7→ Nil]〉 x̄K ` 〈>|T̄1〉

Jr̄ , h , t , ā 〈Π2[a0 7→ Cons(h,t)] ∧ φ[a0 7→ t, x̄ 7→ r̄] B φ[a0 7→ Cons(h,t)]〉 x̄K ` 〈>|T̄2〉
Ja0 , ā 〈Π1 B φ〉 x̄K ` 〈P |rec(a0,ā)〉

The goal of the rule is to derive a solution consisting of a single invocation
of a (fresh) recursive function rec, of the following form:

def rec(a0, ā) = {
require(Π2)
a0 match {
case Nil ⇒ T̄1

case Cons(h, t) ⇒
val r̄ = rec(t, ā)
T̄2

}
} ensuring(r̄ ⇒ φ[x̄ 7→ r̄])

The rule decomposes the problem into two cases, corresponding to the alterna-
tives in the data type, and assumes that the solution takes the form of a fold
function, fixing the recursive call.

Executing Specifications using Synthesis and Constraint Solving 11

6 Combining Synthesis and Runtime Constraint Solving

The deductive synthesis framework allows us to split a challenging problem into
tractable sub problems. In the case where the subproblems remain too challeng-
ing, we keep their corresponding declarative specifications and compile them into
the run-time invocation of the constraint. This result in a partially implemented
program. In certain cases, the partial program is well-defined for simple, frequent
paths, and only falls back to run-time solving for complex cases.

As an illustrative example, we give here the partial derivation of the func-
tion contains on CTrees from Section 2 using rules such as the ones described in
Section 5.

We start with the synthesis problem:

Jc, d, v 〈inv(CTree(c, d)) B x ⇐⇒ v ∈ content(CTree(c, d))〉 xK

A first step is to perform case analysis on d, the tree. This generates two sub-
problems, for the cases Empty and Node respectively. For Empty, we have:

Jc, v 〈inv(CTree(c,Empty)) B x ⇐⇒ v ∈ content(CTree(c,Empty))〉 xK

At this point, inv(CTree(c, Empty)) simplifies to > and content(CTree(c, Empty))

simplifies to ∅. The problem thus becomes:

Jc, v 〈>B x ⇐⇒ v ∈ ∅〉 xK

which is solved by 〈>|false〉. For the Node branch, we have:

Jc, n, v 〈n 6= Empty ∧ inv(CTree(c, n)) B x ⇐⇒ v ∈ content(CTree(c, n))〉 xK

This is almost the original problem, with the additional contextual information
that the tree is not empty. Given that we have two integer variables in scope, c
and v (the cache and the value for which we are checking inclusion), a potential
tactic is to perform case analysis on their equality. This yields two subproblems.
For the equal case, we have one fewer variable:

Jn, v 〈n 6= Empty ∧ inv(CTree(v, n)) B x ⇐⇒ v ∈ content(CTree(v, n))〉 xK

At this point, because inv(CTree(v,n)) implies that v∈CTree(v,n), the problem is
solved with 〈>|true〉.

For the final subproblem, where d is a Node and the cache does not hold
the value v, our system is currently not efficient enough to derive a solution.
Therefore, it falls back to emitting a run-time invocation of choose. Combining
the solutions for all subproblems, we obtain the partially synthesized function
contains as shown in Section 2.

6.1 Discussion

It is our hope that the combination of two technologies, run-time constraint solv-
ing and synthesis, can make execution of specifications practical. It will be then

12 Kuncak, Kneuss, Suter

interesting to understand to what extend such complete specifications change the
software development process. Writing data structures using constraints shows
the productivity advantages of using constraints, because data structure invari-
ants are reusable across all operations, whereas the remaining specification of
each individual operation becomes extremely concise. The development process
thus approaches the description of a data structure design from a textbook [15],
which starts from basic invariants and uses them as guiding principle when pre-
senting the implementation of data structure operations. We are thus hopeful
that, among other results, we can soon enable automated generation of efficient
unbounded data structures from high-level descriptions, analogously to recent
breakthrough on cache coherence protocol generation [71].

An exciting future direction is to use run-time property verification tech-
niques to efficiently combine code generated through speculative synthesis and
constraint solving. In many synthesis approaches, due to a heavy use of example-
driven techniques and the limitations of static verification, it is also quite possible
that the automatically generated implementation is incorrect for some of the in-
puts. In such cases, techniques of run-time verification can be used to detect,
with little overhead, the violation of specifications for given inputs. As a result,
synthesis could be used to generate fast paths and likely code fragments, while
ensuring the overall adherence to specification at run time.

In general, we are excited about future interplay between dynamic and static
approaches to make specifications executable, which is related to partial evalu-
ation and to techniques for compilation of declarative programming languages,
as well as static optimization of run-time checks.

7 Related Work

We provide an overview of related work on executing constraints using general-
purpose solvers at run-time, synthesizing constraints into conventional functional
and imperative code, and combining these two extreme approaches by staging
the computation between run-time and compile time.

7.1 Run-time Constraint Solving

This proceedings volume contains a notable approach and tool Boogaloo [56],
which enables execution of a rich intermediate language Boogie [43]. The orig-
inal purpose of Boogie is static verification [6]. The usual methods to verify
Boogie programs generate conservative sufficient verification, which become un-
provable if the invariants are not inductive. Tools such as Boogaloo complement
verification-condition generation approaches and help developer distinguish er-
rors in programs or specifications that would manifest at run-time from those
errors that come from inductive statements not being strong enough. A run-
time interpreter for the annotations of the Jahob verification system [79] can
also execute certain limited form of specifications, but does not use symbolic ex-
ecution techniques and treats quantifiers more conservatively than the approach

Executing Specifications using Synthesis and Constraint Solving 13

of Boogaloo. Our current Leon system works with a quantifier-free language;
the developers write specifications using recursion instead of quantifiers. Our
system allows developers to omit postconditions of defined functions and does
not reporting spurious counterexamples. Therefore, it provides the users the ad-
vantages of both sound static verification and true counterexamples in a unified
algorithm. As remarked, however, unfolding recursive functions can be viewed
as a particular quantifier instantiation strategy.

Constraint solving is key for executing programs annotated with contracts
because it enables the generation of concrete states that satisfy a given precon-
dition. In our tool we use our approach of satisfiability modulo recursive (pure)
functions. In a prior work we have focused on constraint programming using
such system [39], embedding constraint programming with recursive functions
and SMT solvers into the full Scala language and enabling ranked enumeration of
solutions. The Boogaloo approach [56] uses symbolic execution where quantifiers
are treated through a process that generalizes deterministic function unrolling
to more general declarative constraints. Unfolding is also used in bounded model
checking [7] and k-induction approaches [35]. Symbolic execution can also be per-
formed at the level of bytecodes, as in the UDITA system that builds on Java
Pathfinder and contains specialized techniques for generating non-isomorphic
graph structures [26].

Functional logic programming [3] amalgamates the functional programming
and logic programming paradigms into a single language. Functional logic lan-
guages, such as Curry [47] benefit from efficient demand-driven term reduction
strategies proper to functional languages, as well as non-deterministic operations
of logic languages, by using a technique called narrowing, a combination of term
reduction and variable instantiation. Instantiation of unbound logic variables oc-
cur in constructive guessing steps, only to sustain computation when a reduction
needs their values. The performance of non-deterministic computations depends
on the evaluation strategy, which are formalized using definitional trees [2]. Ap-
plications using functional logic languages include programming of graphical and
web user interfaces [28,29] as well as providing high-level APIs for accessing and
manipulating databases [11]. The Oz language and the associated Mozart Pro-
gramming System is another admirable combination of multiple paradigms [72],
with applications in functional, concurrent, and logic programming. In particu-
lar, Oz supports a form of logical variables, and logic programming is enabled
through unification. One limitation is that one cannot perform arithmetic op-
erations with logical variables (which we have demonstrated in several of our
examples), because unification only applies to constructor terms.

Monadic constraint programming [58] integrates constraint programming
into purely functional languages by using monads to define solvers. The au-
thors define monadic search trees, corresponding to a base search, that can be
transformed by the use of search transformers in a composable fashion to in-
crease performance. The Dminor language [8] introduces the idea of using an
SMT solver to check subtyping relations between refinement types; in Dminor,
all types are defined as logical predicates, and subtyping thus consists of proving

14 Kuncak, Kneuss, Suter

an implication between two such predicates. The authors show that an impres-
sive number of common types (including for instance algebraic data types) can
be encoded using this formalism. In this context, generating values satisfying a
predicate is framed as the type inhabitation problem, and the authors introduce
the expression elementofT to that end. It is evaluated by invoking Z3 at run-time
and is thus conceptually comparable to our find construct but without support
for recursive function unfolding. We have previously found that recursive func-
tion unfolding works better as a mechanism for satisfiability checking than using
quantified axiomatization of recursive functions [69]. In general, we believe that
our examples are substantially more complex than the experiences with elementof

in the context of Dminor.
The ScalaZ3 library [38], used in Leon, integrates invocations to Z3 into a

programming language. Because it is implemented purely as a library, we were
then not able to integrate user-defined recursive functions and data types into
constraints, so the main application is to provide an embedded domain-specific
language to access the constraint language of Z3 (but not to extend it). A similar
approach has been taken by others to invoke the Yices SMT solver [20] from
Haskell.4

7.2 Synthesis of Functions

Our approach blends deductive synthesis [45,46,61], which incorporates transfor-
mation of specifications, inductive reasoning, recursion schemes and termination
checking, with modern SMT techniques and constraint solving for executable
constraints. As one of our subroutines we include complete functional synthe-
sis for integer linear arithmetic [42] and extend it with a first implementation
of complete functional synthesis for algebraic data types [32, 67]. This gives us
building blocks for synthesis of recursion-free code. To synthesize recursive code
we build on and further advance the counterexample-guided approach to syn-
thesis [64].

Deductive synthesis frameworks. Early work on synthesis [45, 46] focused on
synthesis using expressive and undecidable logics, such as first-order logic and
logic containing the induction principle.

Programming by refinement has been popularized as a manual activity [5,76].
Interactive tools have been developed to support such techniques in HOL [13].
A recent example of deductive synthesis and refinement is the Specware system
from Kesterel [61]. We were not able to use the system first-hand due to its
availability policy, but it appears to favor expressive power and control, whereas
we favor automation.

A combination of automated and interactive development is analogous to the
use of automation in interactive theorem provers, such as Isabelle [50]. However,
whereas in verification it is typically the case that the program is available, the
emphasis here is on constructing the program itself, starting from specifications.

4 http://hackage.haskell.org/package/yices-easy

Executing Specifications using Synthesis and Constraint Solving 15

Work on synthesis from specifications [65] resolves some of these difficulties by
decoupling the problem of inferring program control structure and the problem
of synthesizing the computation along the control edges. The work leverages
verification techniques that use both approximation and lattice theoretic search
along with decision procedures, but appears to require more detailed information
about the structure of the expected solution than our approach.

Synthesis with input/output examples. One of the first works that addressed
synthesis with examples and put inductive synthesis on a firm theoretical foun-
dation is the one by Summers [66]. Subsequent work presents extensions of the
classical approach to induction of functional Lisp-programs [30, 36]. These ex-
tensions include synthesizing a set of equations (instead of just one), multiple
recursive calls and systematic introduction of parameters. Our current system
lifts several restrictions of previous approaches by supproting reasoning about
arbitrary datatypes, supporting multiple parameters in concrete and symbolic
I/O examples, and allowing nested recursive calls and user-defined declarations.

Inductive programming and programming by demonstration. Inductive (logic)
programming that explores automatic synthesis of (usually recursive) programs
from incomplete specifications, most often being input/output examples [24,49],
influenced our work. Recent work in the area of programming by demonstration
has shown that synthesis from examples can be effective in a variety of domains,
such as spreadsheets [60]. Advances in the field of SAT and SMT solvers inspired
counter-example guided iterative synthesis [27, 64], which can derive input and
output examples from specifications. Our tool uses and advances these techniques
through two new counterexample-guided synthesis approaches.

Synthesis based on finitization techniques. Program sketching has demonstrated
the practicality of program synthesis by focusing its use on particular domains
[62–64]. The algorithms employed in sketching are typically focused on appro-
priately guided search over the syntax tree of the synthesized program. The tool
we presented shows one way to move the ideas of sketching towards infinite do-
mains. In this generalization we leverage reasoning about equations as much as
SAT techniques.

Reactive synthesis. Synthesis of reactive systems generates programs that run
forever and interact with the environment. However, known complete algorithms
for reactive synthesis work with finite-state systems [55] or timed systems [4].
Such techniques have applications to control the behavior of hardware and em-
bedded systems or concurrent programs [73]. These techniques usually take spec-
ifications in a fragment of temporal logic [54] and have resulted in tools that can
synthesize useful hardware components [33, 34]. Recently such synthesis tech-
niques have been extended to repair that preserves good behaviors [23], which is
related to our notion of partial programs that have remaining choose statements.

16 Kuncak, Kneuss, Suter

Automated inference of program fixes and contracts. These areas share the
common goal of inferring code and rely on specialized software synthesis tech-
niques [53, 74, 75]. Inferred software fixes and contracts are usually snippets of
code that are synthesized according to the information gathered about the ana-
lyzed program. The core of these techniques lies in the characterization of run-
time behavior that is used to guide the generation of fixes and contracts. Such
characterization is done by analyzing program state across the execution of tests;
state can be defined using user-defined query operations [74,75], and additional
expressions extracted from the code [53]. Generation of program fixes and con-
tracts is done using heuristically guided injection of (sequences of) routine calls
into predefined code templates.

Our synthesis approach works with purely functional programs and does not
depend on characterization of program behavior. It is more general in the sense
that it focuses on synthesizing whole correct functions from scratch and does
not depend on already existing code. Moreover, rather than using execution of
tests to define starting points for synthesis and SMT solvers just to guide the
search, our approach utilizes SMT solvers to guarantee correctness of generated
programs and uses execution of tests to speedup the search. Coupling of flexible
program generators and the Leon verifier provides more expressive power of the
synthesis than filling of predefined code schemas.

7.3 Combining Run-Time and Compile-Time Approaches

We have argued that constraint solving generalizes run-time checking, and allows
the underlying techniques to be applied in more scenarios than providing addi-
tional redundancy. The case of optimizing run-time checks also points out that
there is a large potential for speedups in executing specifications: in the limit,
a statically proved assertion can be eliminated, so its execution cost goes from
traversing a significant portion of program state to zero. As is in general the case
for compilation, such static pre-computation can be viewed as partial evaluation,
and has been successfully applied for temporal finite-state properties [10].

Compilation and transformation of logic programs. Compilation of logic pro-
grams is important starting point for improving the baseline of compiled code.
A potential inefficiency in the current approach (though still only a polynomial
factor) is that the constraint solver and the underlying programming language
use a different representation of values, so values need to be converted at the
boundary of constraints and standard functional code. Techniques such as those
employed in Warren’s Abstract Machine (WAM) is relevant in this context [1].
Deeper optimizations and potentially exponential speedups can be obtained us-
ing tabling [14], program transformation [59] and partial evaluation [12,25].

Specifications as a fallback to imperative code. The idea to use specifications as a
fall-back mechanism for imperative code was adopted in [57]. Dynamic contract
checking is applied and, upon violations, specifications can be executed. The tech-
nique ignores the erroneous state and computes output values for methods given

Executing Specifications using Synthesis and Constraint Solving 17

concrete input values and the method contract. The implementation uses a rela-
tional logic similar to Alloy [31] for specifications, and deploys the Kodkod model
finder [70]. A related tight integration between Java and the Kodkod engine is
presented in [48]. We expect that automated synthesis will allow the developers
to use specifications alone in such scenarios, with a candidate implementation
generated automatically.

Data structure repair. It is worth mentioning that this proceedings also con-
tains new results [78] in the exciting area of data structure repair. This general
approach is related to solving constraints at run-time. The assumption in data
structure repair is that, even if a given data structure does not satisfy the desired
property, it may provide a strong hint at the desired data structure. Therefore, it
is reasonable to use the current data structure as the starting point for finding the
value that satisfies the desired constraint, hoping that the correct data structure
is close to the current one. Although such approach is slightly more natural in
the context of imperative than functional code, it is relevant whenever the data
manipulated is large enough. The first specification-driven approach for data
structure repair is by Demsky and Rinard [18, 19] where the goal is to recover
from corrupted data structures by transforming states that are erroneous with
respect to integrity constraints into valid ones, performing local heuristic search.
Subsequent work uses less custom constraint solvers instead [21,22]. We believe
that SMT solvers could also play a role in this domain. Researchers [77] have
also used method contracts instead of data structure integrity constraints to be
able to support rich behavioral specifications, which makes it also more relevant
for our scenarios. While the primary goal in most works is run-time recovery of
data structures, recent work [44] extends the technique for debugging purposes,
by abstracting concrete repair actions to program statements performing the
same actions. As in general for run-time constraint solving, we expect that data
structure repair can be productively applied to implementations generated using
“speculative synthesis” that generates a not necessarily correct implementation.

References

1. H. Ait-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,
1991.

2. S. Antoy. Definitional trees. In ALP, pages 143–157, 1992.
3. S. Antoy and M. Hanus. Functional logic programming. CACM, 53(4):74–85, 2010.
4. E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and

timed systems. In Hybrid Systems II, pages 1–20, 1995.
5. R.-J. Back and J. von Wright. Refinement Calculus. Springer, 1998.
6. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:

A modular reusable verifier for object-oriented programs. In FMCO, 2005.
7. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58, 2003.
8. G. M. Bierman, A. D. Gordon, C. Hritcu, and D. E. Langworthy. Semantic sub-

typing with an SMT solver. In ICFP, pages 105–116, 2010.

18 Kuncak, Kneuss, Suter

9. R. W. Blanc, E. Kneuss, V. Kuncak, and P. Suter. An overview of the Leon
verification system: Verification by translation to recursive functions. In Scala
Workshop, 2013.

10. E. Bodden, P. Lam, and L. J. Hendren. Partially evaluating finite-state runtime
monitors ahead of time. ACM Trans. Program. Lang. Syst., 34(2):7, 2012.

11. B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry.
In PADL, pages 316–332, 2008.

12. M. Bruynooghe, D. D. Schreye, and B. Krekels. Compiling control. The Journal
of Logic Programming, 6(12):135 – 162, 1989.

13. M. Butler, J. Grundy, T. Langbacka, R. Ruksenas, and J. von Wright. The re-
finement calculator: Proof support for program refinement. In Formal Methods
Pacific, 1997.

14. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. J. ACM, 43(1):20–74, 1996.

15. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms (Second Edition). MIT Press and McGraw-Hill, 2001.

16. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

17. L. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In
Formal Methods in Computer-Aided Design, Nov. 2009.

18. B. Demsky and M. C. Rinard. Automatic detection and repair of errors in data
structures. In OOPSLA, pages 78–95, 2003.

19. B. Demsky and M. C. Rinard. Data structure repair using goal-directed reasoning.
In ICSE, pages 176–185, 2005.

20. B. Dutertre and L. de Moura. The Yices SMT solver, 2006. http://yices.csl.

sri.com/tool-paper.pdf.
21. B. Elkarablieh and S. Khurshid. Juzi: a tool for repairing complex data structures.

In ICSE, pages 855–858, 2008.
22. B. Elkarablieh, S. Khurshid, D. Vu, and K. S. McKinley. Starc: static analysis for

efficient repair of complex data. In OOPSLA, pages 387–404, 2007.
23. C. V. Essen and B. Jobstmann. Program repair without regret. In CAV, 2013.
24. P. Flener and D. Partridge. Inductive programming. Autom. Softw. Eng., 8(2):131–

137, 2001.
25. J. Gallagher and J. Peralta. Regular tree languages as an abstract domain in

program specialisation. Higher-Order and Symbolic Computation, 14(2-3):143–172,
2001.

26. M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov.
Test generation through programming in UDITA. In International Conference on
Software Engineering (ICSE), 2010.

27. S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs.
In PLDI, pages 62–73, 2011.

28. M. Hanus. Type-oriented construction of web user interfaces. In PPDP, pages
27–38, 2006.

29. M. Hanus and C. Kluß. Declarative programming of user interfaces. In PADL,
pages 16–30, 2009.

30. M. Hofmann. IgorII - an analytical inductive functional programming system (tool
demo). In PEPM, pages 29–32, 2010.

31. D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256–290, 2002.

32. S. Jacobs, V. Kuncak, and P. Suter. Reductions for synthesis procedures. In
Verification, Model Checking, and Abstract Interpretation (VMCAI), 2013.

Executing Specifications using Synthesis and Constraint Solving 19

33. B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In FMCAD, 2006.
34. B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for property

synthesis. In CAV, 2007.
35. T. Kahsai and C. Tinelli. PKIND: A parallel k-induction based model checker. In

10th Int. Workshop Parallel and Distributed Methods in verifiCation (PDMC’11),
2011.

36. E. Kitzelmann and U. Schmid. Inductive synthesis of functional programs: An
explanation based generalization approach. JMLR, 7:429–454, 2006.

37. E. Kneuss, V. Kuncak, I. Kuraj, and P. Suter. On integrating deductive synthesis
and verification systems. Technical Report EPFL-REPORT-186043, EPFL, 2013.

38. A. Köksal, V. Kuncak, and P. Suter. Scala to the power of Z3: Integrating SMT
and programming. In Computer-Aideded Deduction (CADE) Tool Demo, 2011.

39. A. Köksal, V. Kuncak, and P. Suter. Constraints as control. In ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), 2012.

40. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthe-
sis. In ACM SIGPLAN Conf. Programming Language Design and Implementation
(PLDI), 2010.

41. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Functional synthesis for linear
arithmetic and sets. Software Tools for Technology Transfer (STTT), TBD(TBD),
2012.

42. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Software synthesis procedures.
Communications of the ACM, 2012.

43. K. R. M. Leino. This is Boogie 2. Manuscript KRML 178, working draft 24 June
2008.

44. M. Z. Malik, J. H. Siddiqui, and S. Khurshid. Constraint-based program debugging
using data structure repair. In ICST, pages 190–199, 2011.

45. Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM
Trans. Program. Lang. Syst., 2(1):90–121, 1980.

46. Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Commun.
ACM, 14(3):151–165, 1971.

47. E. Michael Hanus. Curry: An integrated functional logic language. http://www.

curry-language.org, 2006. vers. 0.8.2.
48. A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Unifying execution of

imperative and declarative code. In ICSE, pages 511–520, 2011.
49. S. Muggleton and L. D. Raedt. Inductive logic programming: Theory and methods.

J. Log. Program., 19/20:629–679, 1994.
50. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
51. M. Odersky. Contracts for Scala. In Int. Conf. Runtime Verification, 2010.
52. C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.
53. Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer. Evidence-based automated

program fixing. CoRR, abs/1102.1059, 2011.
54. N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In VMCAI,

2006.
55. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL ’89:

Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 179–190, New York, NY, USA, 1989. ACM.

56. N. Polikarpova, C. A. Furia, and S. West. To run what no one has run before. In
Int. Conf. Runtime Verification, 2013.

57. H. Samimi, E. D. Aung, and T. D. Millstein. Falling back on executable specifica-
tions. In ECOOP, pages 552–576, 2010.

20 Kuncak, Kneuss, Suter

58. T. Schrijvers, P. J. Stuckey, and P. Wadler. Monadic constraint programming. J.
Funct. Program., 19(6):663–697, 2009.

59. V. Senni and F. Fioravanti. Generation of test data structures using constraint
logic programming. In TAP, pages 115–131, 2012.

60. R. Singh and S. Gulwani. Synthesizing number transformations from input-output
examples. In CAV, pages 634–651, 2012.

61. D. R. Smith. Generating programs plus proofs by refinement. In VSTTE, pages
182–188, 2005.

62. A. Solar-Lezama, G. Arnold, L. Tancau, R. Bod́ık, V. A. Saraswat, and S. A.
Seshia. Sketching stencils. In PLDI, pages 167–178, 2007.

63. A. Solar-Lezama, C. G. Jones, and R. Bod́ık. Sketching concurrent data structures.
In PLDI, 2008.

64. A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A. Saraswat. Combi-
natorial sketching for finite programs. In ASPLOS, 2006.

65. S. Srivastava, S. Gulwani, and J. Foster. From program verification to program
synthesis. In POPL, 2010.

66. P. D. Summers. A methodology for LISP program construction from examples.
JACM, 24(1):161–175, 1977.

67. P. Suter. Programming with Specifications. PhD thesis, EPFL, December 2012.
68. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types

with abstractions. In ACM POPL, 2010.
69. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs.

In Static Analysis Symposium (SAS), 2011.
70. E. Torlak and D. Jackson. Kodkod: A relational model finder. In Tools and

Algorithms for Construction and Analysis of Systems (TACAS), 2007.
71. A. Udupa, A. Raghavan, J. Deshmukh, S. Mador-Haim, M. Martin, and R. Alur.

Transit: Specifying protocols with concolic snippets. In ACM Conference on Pro-
gramming Language Design and Implementation, 2013.

72. P. Van Roy. Logic programming in Oz with Mozart. In ICLP, 1999.
73. M. T. Vechev, E. Yahav, and G. Yorsh. Inferring synchronization under limited

observability. In TACAS, 2009.
74. Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer. Inferring better contracts. In

ICSE, 2011.
75. Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller. Au-

tomated fixing of programs with contracts. In Proceedings of the 19th international
symposium on Software testing and analysis, ISSTA ’10, pages 61–72, 2010.

76. N. Wirth. Program development by stepwise refinement (reprint). Commun. ACM,
26(1):70–74, 1983.

77. R. N. Zaeem and S. Khurshid. Contract-based data structure repair using Alloy.
In ECOOP, pages 577–598, 2010.

78. R. N. Zaeem, M. Z. Malik, and S. Khurshid. Repair abstractions for more efficient
data structure repair. In Int. Conf. Runtime Verification, 2013.

79. K. Zee, V. Kuncak, M. Taylor, and M. Rinard. Runtime checking for program
verification. In Workshop on Runtime Verification, volume 4839 of LNCS, 2007.

